Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The persistent emergence of COVID-19 variants and recurrent waves of infection worldwide underscores the urgent need for vaccines that effectively reduce viral transmission and prevent infections. Current intramuscular (IM) COVID-19 vaccines inadequately protect the upper respiratory mucosa. In response, we have developed a nonadjuvanted, IFN-armed SARS-CoV-2 fusion protein vaccine with IM priming and intranasal (IN) boost sequential immunization. Our study showed that this sequential vaccination strategy of the IM+IN significantly enhanced both upper respiratory and systemic antiviral immunity in a mouse model, characterized by the rapid increase in systemic and mucosal T and B cell responses, particularly the mucosal IgA antibody response. The IN boost triggered a swift secondary immune response, rapidly inducing antigen-specific IgA+ B cells. Further B cell receptor-seq (BCR-seq) analysis indicated that these IgA+ B cells primarily arose through direct class switching from preexisting IgG+ B cells in draining lymph nodes. Notably, our clinical studies revealed that the IN boost after IM vaccination elicited a robust systemic IgA antibody response in humans, as measured in serum. Thus, we believe that our cytokine-armed protein vaccine presents a promising strategy for inducing rapid and potent mucosal protection against respiratory viral infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870729PMC
http://dx.doi.org/10.1172/JCI175233DOI Listing

Publication Analysis

Top Keywords

class switching
8
mucosal iga
8
upper respiratory
8
protein vaccine
8
iga antibody
8
antibody response
8
iga+ cells
8
sequential intranasal
4
intranasal booster
4
booster triggers
4

Similar Publications

B cells are critical components of the adaptive immune system that proliferate and differentiate within the secondary lymphoid organs upon recognition of antigens and engagement of T cells. Traditional two-dimensional (2D) cell cultures fall short of replicating the intricate structures and dynamic evolution of three-dimensional (3D) environments found in lymphoid organs, prompting the development of more physiologically pertinent models. Our approach employs -hexanoyl glycol chitosan (HGC) coated ultra-low attachment (ULA) lattice plates to cultivate a 3D co-culture of CD40L-expressing MS5 stromal cells and naïve B cells derived from the peripheral blood mononuclear cells (PBMCs) of healthy human donors.

View Article and Find Full Text PDF

Turn-on type fluorescent photochromism of a diarylmaleimide-S,S,S',S'-tetraoxide.

Photochem Photobiol Sci

September 2025

Faculity of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama, Kanagawa, 240-8501, Japan.

In recent years, fluorescence-switchable molecules have garnered significant attention as fluorescent dyes for super-resolution fluorescence microscopy, which is increasingly demanded in the field of biochemical imaging. Among such molecules, diarylethene-S,S,S',S'-tetraoxide derivatives have proven particularly promising due to their ability to achieve high contrast fluorescence switching. Diarylethenes incorporating perfluorocyclopentene as the ethene bridge have become the standard scaffold due to their excellent fatigue resistance and thermal stability.

View Article and Find Full Text PDF

With the goal of manipulating (bio)chemical processes, photoswitches emerge as important assets in molecular nanotechnology. To guide synthetic strategies toward increasingly more efficient systems, conformational dynamics studies performed with atomic rigor are in demand, particularly if this information can be extracted with control over the size of a perturbing solvation layer. Here, we use jet-cooled rotational spectroscopy and quantum chemistry calculations to unravel the structure and micro-hydration dynamics of a prototype photoswitch.

View Article and Find Full Text PDF

Unlabelled: Currently approved type 1 diabetes (T1D) immunotherapies broadly target T cells and delay but do not fully prevent diabetes development, highlighting the need for more selective targets. Anti-insulin germinal center B cells are uniquely able to present pathogenic insulin epitopes and drive anti-insulin T cells to adopt a T follicular helper fate. T cell expression of BCL6, a key transcriptional repressor in the germinal center response, is essential for spontaneous diabetes in non-obese diabetic (NOD) mice.

View Article and Find Full Text PDF