98%
921
2 minutes
20
In a previous preliminary study, radiomic features from the largest and the hottest lesion in baseline F-FDG PET/CT (bPET/CT) of classical Hodgkin's Lymphoma (cHL) predicted early response-to-treatment and prognosis. Aim of this large retrospectively-validated study is to evaluate the predictive role of two-lesions radiomics in comparison with other clinical and conventional PET/CT models. cHL patients with bPET/CT between 2010 and 2020 were retrospectively included and randomized into training-validation sets. Target lesions were: Lesion_A, with largest axial diameter (D); Lesion_B, with highest SUV. Total-metabolic-tumor-volume (TMTV) was calculated and 212 radiomic features were extracted. PET/CT features were harmonized using ComBat across two scanners. Outcomes were progression-free-survival (PFS) and Deauville Score at interim PET/CT (DS). For each outcome, three predictive models and their combinations were trained and validated: - radiomic model "R"; - conventional PET/CT model "P"; - clinical model "C". 197 patients were included (training = 118; validation = 79): 38/197 (19%) patients had adverse events and 42/193 (22%) had DS ≥ 4. In the training phase, only one radiomic feature was selected for PFS prediction in model "R" (Lesion_B F_cm.corr, C-index 66.9%). Best "C" model combined stage and IPS (C-index 74.8%), while optimal "P" model combined TMTV and D (C-index 63.3%). After internal validation, "C", "C + R", "R + P" and "C + R + P" significantly predicted PFS. The best validated model was "C + R" (C-index 66.3%). No model was validated for DS prediction. In this large retrospectively-validated study, a combination of baseline F-FDG PET/CT two-lesions radiomics and other conventional models showed an added prognostic power in patients with cHL. As single models, conventional clinical parameters maintain their prognostic power, while radiomics or conventional PET/CT alone seem to be sub-optimal to predict survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868178 | PMC |
http://dx.doi.org/10.1007/s00277-025-06190-8 | DOI Listing |
Nucl Med Biol
September 2025
Department of Nuclear Medicine, Hannover Medical School, Germany. Electronic address:
Purpose: The liver-brain axis regulates metabolic homeostasis, with glucose metabolism playing a key role. Liver dysfunction, such as fibrosis, may impact brain metabolism and consequently, brain function. Positron emission tomography (PET) imaging provides a non-invasive approach to study glucose metabolism in both organs.
View Article and Find Full Text PDFCancer Immunol Immunother
September 2025
Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, CHUV/UNIL, 1011, Lausanne, Switzerland.
Background: Immunotherapy is a mainstay in the treatment of patients with advanced melanoma. Yet, resistance mechanisms exist, and tumour-associated macrophages (TAMs), particularly the M2-like phenotype, are associated with poorer outcomes, with CD206 serving as their specific marker. We present the first human SPECT/CT study to visualize CD206 + TAMs in patients undergoing immunotherapy and compare the findings to clinical outcomes (NCT04663126).
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
September 2025
Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
Purpose: Tebentafusp has emerged as the first systemic therapy to significantly prolong survival in treatment-naïve HLA-A*02:01 + patients with unresectable or metastatic uveal melanoma (mUM). Notably, a survival benefit has been observed even in the absence of radiographic response. This study aims to investigate the feasibility and prognostic value of artificial intelligence (AI)-assisted quantification and metabolic response assessment of [F]FDG long axial field-of-view (LAFOV) PET/CT in mUM patients undergoing tebentafusp therapy.
View Article and Find Full Text PDFMol Imaging Radionucl Ther
September 2025
University Clinical Center of Serbia, Center for Nuclear Medicine with PET, Belgrade, Serbia.
Fluorine-fluorocholine (F-FCH) is a radiopharmaceutical used in primary hyperparathyroidism. The data about its utility in malignancies other than prostate and hepatocellular carcinoma is limited. We present the case of a patient who was referred for F-FCH positron emission tomography/computed tomography (PET/CT) due to the persistently elevated parathormone and calcium levels following total thyroidectomy with left lower parathyroidectomy for parathyroid carcinoma (PTC).
View Article and Find Full Text PDFFront Oncol
August 2025
German Center for Lung Research (Deutsches Zentrum für Lungenforschung (DZL)) (Comprehensive Pneumology Center - Munich (CPC-M)), Munich, Germany.
Background: Predictors for checkpoint inhibitor-related pneumonitis (cinrPneumonitis) are desperately needed. This study aimed to investigate the pretreatment standardized uptake value (SUV) on [F]FDG-PET/CT of non-tumorous lung tissue as a predictive imaging marker for the development of cinrPneumonitis in 239 patients with lung cancer.
Methods: All patients with lung cancer receiving [F]Fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) prior to immune checkpoint inhibitor (ICI) therapy were included and retrospectively analyzed.