A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Nlnemo suppresses of BMP signaling in wing development of the brown planthopper, Nilaparvata lugens. | LitMetric

Nlnemo suppresses of BMP signaling in wing development of the brown planthopper, Nilaparvata lugens.

Int J Biol Macromol

Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China. Electronic address:

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nemo-like kinases (NLKs) integrate multiple signaling pathways and exhibit functional diversity in developmental processes, including the bone morphogenetic protein (BMP) pathway. However, their roles in insect wing development, particularly in hemimetabolous insects like the brown planthopper (Nilaparvata lugens), remain poorly understood. Here, we investigated the role of Nlnemo (Nlnmo), an NLK, in the wing development of N. lugens. We cloned and characterized Nlnmo and found it highly conserved across insect species. Expression analysis revealed higher Nlnmo levels in brachypterous compared to macropterous strains, particularly in wing buds. RNA interference (RNAi) of Nlnmo led to enlarged wing and thickened veins, indicating its inhibitory role in wing development. Further analysis revealed that Nlnmo suppresses BMP signaling by downregulating Nlmad1 and Nldpp. Dual knockdown of Nlmad1 and Nlnmo demonstrated that Nlnmo mitigates Nlmad1-mediated effects on wing development. These findings establish Nlnmo function as a key suppressor of wing development in N. lugens via BMP signaling inhibition through Nlmad1. This study deepens our understanding of the molecular mechanisms underlying wing development in in N. lugens and highlights potential pest management strategies by targeting migration-related traits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.139821DOI Listing

Publication Analysis

Top Keywords

wing development
28
bmp signaling
12
development lugens
12
wing
9
suppresses bmp
8
brown planthopper
8
planthopper nilaparvata
8
nilaparvata lugens
8
nlnmo
8
analysis revealed
8

Similar Publications