Machine Learning-enhanced X-ray-based Radiomics in the Identification of Post-COVID Patients.

Arch Bronconeumol

National Koranyi Institute of Pulmonology, Budapest, Hungary; Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary; Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.arbres.2024.12.004DOI Listing

Publication Analysis

Top Keywords

machine learning-enhanced
4
learning-enhanced x-ray-based
4
x-ray-based radiomics
4
radiomics identification
4
identification post-covid
4
post-covid patients
4
machine
1
x-ray-based
1
radiomics
1
identification
1

Similar Publications

This study integrates machine learning (ML) and density functional theory (DFT) to systematically investigate the oxygen electrocatalytic activity of two-dimensional (2D) TM(HXBHYB) (HX/YB = HIB (hexaaminobenzene), HHB (hexahydroxybenzene), HTB (hexathiolbenzene), and HSB (hexaselenolbenzene)) metal-organic frameworks (MOFs). By coupling transition metals (TM) with the above ligands, stable 2D TM(HXBHYB)@MOF systems were constructed. The Random Forest Regression (RFR) model outperformed the others, revealing the intrinsic relationship between the physicochemical properties of 2D TM(HXBHYB)@MOF and their ORR/OER overpotentials.

View Article and Find Full Text PDF

Microfluidic paper-based analytical devices for food spoilage detection: emerging trends and future directions.

Talanta

September 2025

Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam. Electronic address:

Food spoilage poses a global challenge with far-reaching consequences for public health, economic stability, and environmental sustainability. Conventional analytical methods for spoilage detection though accurate are often cost-prohibitive, labor-intensive, and unsuitable for real-time or field-based monitoring. Microfluidic paper-based analytical devices (μPADs) have emerged as a transformative technology offering rapid, portable, and cost-effective solutions for food quality assessment.

View Article and Find Full Text PDF

Accurately modeling the binding free energies associated with molecular cluster formation is critical for understanding atmospheric new particle formation. Conventional quantum-chemistry methods, however, often struggle to describe thermodynamic contributions, particularly in systems exhibiting significant anharmonicity and configurational complexity. We employed umbrella sampling, an enhanced-sampling molecular dynamics technique, to compute Gibbs binding free energies for clusters formed from a diverse set of new particle formation precursors, including sulfuric acid, ammonia, dimethylamine, and water.

View Article and Find Full Text PDF

Background: Retinal vein occlusion (RVO) is a leading cause of visual impairment on a global scale. Its pathological mechanisms involve a complex interplay of vascular obstruction, ischemia, and secondary inflammatory responses. Recent interdisciplinary advances, underpinned by the integration of multimodal data, have established a new paradigm for unraveling the pathophysiological mechanisms of RVO, enabling early diagnosis and personalized treatment strategies.

View Article and Find Full Text PDF