Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Nitric oxide (NO) has garnered significant attention as a critical regulatory factor and signaling molecule in plant growth. However, the effects of microplastic pollution on the release of NO by algae have not been reported. Thus, in this study, the release of NO by Skeletonema costatum and Gymnodinium sp. when exposed to different concentrations (5-50 mg/L) of polystyrene microplastics (PS, 0.1 μm) after a 15-day cultivation period was investigated. PS microplastics negatively impacted the photosynthetic processes of microalgae through several mechanisms, such as aggregation and adsorption, consequently affecting their physiological state. This physiological damage increased reactive oxygen species (ROS), which subsequently inhibited algal growth. However, the activity of nitrate reductase increased, and the released NO was able to scavenge ROS, alleviating oxidative stress and providing microalgae with a temporary adaptive advantage. This adaptability was only observed from day 3-7; beyond that period, microplastics continued to inflict irreversible toxicity on the microalgae. Notably, the toxicity of PS microplastics was less pronounced in S. costatum compared with Gymnodinium sp. Overall, these findings reveal that marine microalgae can release NO, mitigating the short-term toxic effects of microplastic pollution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2025.125668 | DOI Listing |