Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The nonlinearity problem of digital pixels restricts the reduction in power consumption at the pixel-level circuit. The main cause of nonlinearity is discussed in this article and low power consumption is attained by reducing the static current in capacitive transimpedance amplifiers (CTIAs) and comparators. Linearity was successfully improved through the use of an off-chip calibration method. A 64 × 64 array prototype digital readout integrated circuit (DROIC) was fabricated using a 0.18 μm 1P6M CMOS process. Experimental results indicated that the post-calibration linearity reached 99.6% with an input current of up to 1.5 μA. The static power consumption per digital pixel was 6 μW.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723432PMC
http://dx.doi.org/10.3390/s25010252DOI Listing

Publication Analysis

Top Keywords

power consumption
12
calibration method
8
digital pixel
8
pfm-based calibration
4
method low-power
4
low-power high-linearity
4
digital
4
high-linearity digital
4
pixel nonlinearity
4
nonlinearity problem
4

Similar Publications

This commentary examines the learnings from different countries included in the Special Series: . Studies focused on the initial phase of the GFF and highlighted key themes, including power asymmetries, stakeholder engagement, the alignment of funding to health needs, and the treatment of community health and quality of care within GFF-supported programs. This commentary reflects on policy processes and health financing dynamics emerging from the papers in the Special Series and examines what it means for the new strategy in development by the GFF.

View Article and Find Full Text PDF

Ammonia is one of the most important inputs in the global chemical industry, used primarily in fertilizers and explosives. It is increasingly recognized as a potential energy carrier. Its production is dominated by the Haber-Bosch process, which requires high energy consumption and significant capital investment, and contributes significantly to greenhouse gas emissions.

View Article and Find Full Text PDF

Transformer networks, driven by self-attention, are central to large language models. In generative transformers, self-attention uses cache memory to store token projections, avoiding recomputation at each time step. However, graphics processing unit (GPU)-stored projections must be loaded into static random-access memory for each new generation step, causing latency and energy bottlenecks.

View Article and Find Full Text PDF

Bimorph Soft Actuators Based on Isostructural Heterogeneous Janus Films.

ACS Nano

September 2025

State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

Bimorph soft actuators, traditionally composed of two materials with distinct responses to external stimuli, often face durability challenges due to structural incompatibility. Here, we propose an alternative design employing free-standing, isostructural heterogeneous Janus (IHJ) films that harmonize stability with high actuation efficiency. These IHJ films were fabricated through a vacuum self-assembly process, consisting of TiCT MXene nanosheets and hybrid graphene oxide (GO)-biomass bacterial cellulose (BC), with a well-matched two-dimensional lattice structure.

View Article and Find Full Text PDF

The Kuramoto model, a paradigmatic framework for studying synchronization, exhibits a transition to collective oscillations only above a critical coupling strength in the thermodynamic limit. However, real-world systems are finite, and their dynamics can deviate significantly from mean-field predictions. Here, we investigate finite-size effects in the Kuramoto model below the critical coupling, where the theory in the thermodynamic limit predicts complete asynchrony.

View Article and Find Full Text PDF