98%
921
2 minutes
20
The nonlinearity problem of digital pixels restricts the reduction in power consumption at the pixel-level circuit. The main cause of nonlinearity is discussed in this article and low power consumption is attained by reducing the static current in capacitive transimpedance amplifiers (CTIAs) and comparators. Linearity was successfully improved through the use of an off-chip calibration method. A 64 × 64 array prototype digital readout integrated circuit (DROIC) was fabricated using a 0.18 μm 1P6M CMOS process. Experimental results indicated that the post-calibration linearity reached 99.6% with an input current of up to 1.5 μA. The static power consumption per digital pixel was 6 μW.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723432 | PMC |
http://dx.doi.org/10.3390/s25010252 | DOI Listing |
Glob Health Action
December 2025
African Leaders Malaria Alliance, New York, USA.
This commentary examines the learnings from different countries included in the Special Series: . Studies focused on the initial phase of the GFF and highlighted key themes, including power asymmetries, stakeholder engagement, the alignment of funding to health needs, and the treatment of community health and quality of care within GFF-supported programs. This commentary reflects on policy processes and health financing dynamics emerging from the papers in the Special Series and examines what it means for the new strategy in development by the GFF.
View Article and Find Full Text PDFChem Rec
September 2025
Millenium Institute on Green Ammonia as Energy Vector, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile.
Ammonia is one of the most important inputs in the global chemical industry, used primarily in fertilizers and explosives. It is increasingly recognized as a potential energy carrier. Its production is dominated by the Haber-Bosch process, which requires high energy consumption and significant capital investment, and contributes significantly to greenhouse gas emissions.
View Article and Find Full Text PDFNat Comput Sci
September 2025
PGI-15, Forschungszentrum Jülich, Jülich, Germany.
Transformer networks, driven by self-attention, are central to large language models. In generative transformers, self-attention uses cache memory to store token projections, avoiding recomputation at each time step. However, graphics processing unit (GPU)-stored projections must be loaded into static random-access memory for each new generation step, causing latency and energy bottlenecks.
View Article and Find Full Text PDFACS Nano
September 2025
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
Bimorph soft actuators, traditionally composed of two materials with distinct responses to external stimuli, often face durability challenges due to structural incompatibility. Here, we propose an alternative design employing free-standing, isostructural heterogeneous Janus (IHJ) films that harmonize stability with high actuation efficiency. These IHJ films were fabricated through a vacuum self-assembly process, consisting of TiCT MXene nanosheets and hybrid graphene oxide (GO)-biomass bacterial cellulose (BC), with a well-matched two-dimensional lattice structure.
View Article and Find Full Text PDFChaos
September 2025
A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Ulyanova Street 46, Nizhny Novgorod 603950, Russia.
The Kuramoto model, a paradigmatic framework for studying synchronization, exhibits a transition to collective oscillations only above a critical coupling strength in the thermodynamic limit. However, real-world systems are finite, and their dynamics can deviate significantly from mean-field predictions. Here, we investigate finite-size effects in the Kuramoto model below the critical coupling, where the theory in the thermodynamic limit predicts complete asynchrony.
View Article and Find Full Text PDF