A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Evolutionary analysis of genes associated with the sense of balance in semi-aquatic mammals. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Semi-aquatic mammals represent a transitional phase in the evolutionary spectrum between terrestrial and aquatic mammals. The sense of balance is crucial for mammalian locomotion, and in semi-aquatic mammals, the structural foundation of this sense (the vestibular system) shows distinct morphological adaptations to both aquatic and terrestrial environments compared to their terrestrial counterparts. Despite this, the precise molecular mechanisms driving these adaptations remain elusive. Our study endeavors to unravel the genetic components associated with the sense of balance in semi-aquatic mammals and to examine the evolutionary trajectories of these genes, shed light on the molecular mechanisms underlying the adaptive evolution of balance perception in semi-aquatic mammals.

Results: We selected 42 mammal species across 20 orders, 38 families, and 42 genera for analysis. We analyzed a comprehensive set of 116 genes related to the vestibular system's development or function. Our findings indicate that 27 of these genes likely experienced adaptive evolution in semi-aquatic mammals. Particularly, genes such as SLC26A2, SOX10, MYCN, and OTX1 are implicated in collectively orchestrating morphological adaptations in the semicircular canals to suit semi-aquatic environments. Additionally, genes associated with otolith development, including SLC26A2, OC90, and OTOP1, likely regulate otolith sensitivity across various locomotor modes. Moreover, genes linked to vestibular disorders, such as GJB2, GJB6, and USH1C, may provide a molecular foundation for averting vertigo amidst intricate locomotor scenarios in semi-aquatic mammals.

Conclusions: Our research offers insights into the molecular mechanisms underlying the evolution of the sense of balance in semi-aquatic mammals, while also providing a new research direction for the adaptive evolution of mammals undergoing a secondary transition to an aquatic lifestyle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721335PMC
http://dx.doi.org/10.1186/s12862-024-02345-9DOI Listing

Publication Analysis

Top Keywords

semi-aquatic mammals
24
sense balance
16
balance semi-aquatic
12
molecular mechanisms
12
adaptive evolution
12
semi-aquatic
9
genes associated
8
associated sense
8
mammals
8
morphological adaptations
8

Similar Publications