A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Gut microbes modulate the effects of the flavonoid quercetin on atherosclerosis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Gut bacterial metabolism of dietary flavonoids results in the production of a variety of phenolic acids, whose contributions to health remain poorly understood. Here, we show that supplementation with the commonly consumed flavonoid quercetin impacted gut microbiome composition and resulted in a significant reduction in atherosclerosis burden in conventionally raised (ConvR) Apolipoprotein E (ApoE) knockout (KO) mice but not in germ-free (GF) ApoE KO mice. Metabolomic analysis revealed that consumption of quercetin significantly increased plasma levels of benzoylglutamic acid, 3,4 dihydroxybenzoic acid (3,4-DHBA) and its sulfate-conjugated form in ConvR mice, but not in GF mice supplemented with the flavonoid. Levels of these metabolites were negatively associated with atherosclerosis burden. Furthermore, we show that 3,4-DHBA prevented lipopolysaccharide (LPS)-induced decrease in transendothelial electrical resistance (TEER). These results suggest that the effects of quercetin on atherosclerosis are influenced by gut microbes and are potentially mediated by bacterial metabolites derived from the flavonoid.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723976PMC
http://dx.doi.org/10.1038/s41522-024-00626-1DOI Listing

Publication Analysis

Top Keywords

gut microbes
8
flavonoid quercetin
8
quercetin atherosclerosis
8
atherosclerosis burden
8
gut
4
microbes modulate
4
modulate effects
4
flavonoid
4
effects flavonoid
4
quercetin
4

Similar Publications