Adaptive immune cells antagonize ILC2 homeostasis via SLAMF3 and SLAMF5.

Sci Adv

Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei 230032, China.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Type 2 innate lymphoid cells (ILC2s) mainly reside in tissues with few lymphoid cells. How their tissue residency is regulated remains poorly understood. This study explores the inhibitory role of SLAM-family receptors (SFRs) on adaptive immune cells in ILC2 maintenance. We observed an increase in the population of ILC2s in Rag1-deficient mice. Homotypic engagement of SFRs between ILC2s and adaptive immune cells was identified as a potential mechanism. SFR deficiency led to an increase in ILC2s. Conditional deletion of SFRs on T and/or B cells led to an increased ILC2 abundance. Mechanistically, as ILC precursors differentiate into ILC2s, SFRs, primarily SLAMF3 and SLAMF5, are inhibitory, which impair IL-7-induced PI3K activation and enhance apoptosis via SHP-1. These findings reveal a mechanism by which adaptive immune cells negatively regulate the homeostasis of ILC2s and contribute to our understanding of the complex interplay between innate and adaptive immune cells in the regulation of immune responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721569PMC
http://dx.doi.org/10.1126/sciadv.adp9894DOI Listing

Publication Analysis

Top Keywords

adaptive immune
20
immune cells
20
cells
8
slamf3 slamf5
8
lymphoid cells
8
ilc2s
6
adaptive
5
immune
5
cells antagonize
4
antagonize ilc2
4

Similar Publications

Multi-omic analysis reveals a key BCAT1 role in mTOR activation by B-cell receptor and TLR9.

J Clin Invest

September 2025

Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, United States of America.

B-lymphocytes play major adaptive immune roles, producing antibody and driving T-cell responses. However, how immunometabolism networks support B-cell activation and differentiation in response to distinct receptor stimuli remains incompletely understood. To gain insights, we systematically investigated acute primary human B-cell transcriptional, translational and metabolomic responses to B-cell receptor (BCR), Toll-like receptor 9 (TLR9), CD40-ligand (CD40L), interleukin-4 (IL4) or combinations thereof.

View Article and Find Full Text PDF

Lymphotoxin β receptor (LTβR/TNFRSF3) signaling plays a crucial role in immune defense. Notably, LTβR-deficient (LTβR) mice exhibit severe defects in innate and adaptive immunity against various pathogens and succumb to infection. Here, we investigated the bone marrow (BM) and peritoneal cavity (PerC) compartments of LTβR mice during infection, demonstrating perturbed B-cell and T-cell subpopulations in the absence of LTβR signaling.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by complex disturbances in both innate and adaptive immune responses, often leading to multi-organ involvement. One of the key features of SLE pathogenesis is endothelial dysfunction, which contributes to immune cell infiltration and vascular inflammation. In this context, adhesion molecules such as platelet endothelial cell adhesion molecule-1 (PECAM-1), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) may reflect the degree of endothelial activation.

View Article and Find Full Text PDF

Dendritic cells: understanding ontogeny, subsets, functions, and their clinical applications.

Mol Biomed

September 2025

National Key Laboratory of Immunity and Inflammation & Institute of Immunology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China.

Dendritic cells (DCs) play a central role in coordinating immune responses by linking innate and adaptive immunity through their exceptional antigen-presenting capabilities. Recent studies reveal that metabolic reprogramming-especially pathways involving acetyl-coenzyme A (acetyl-CoA)-critically influences DC function in both physiological and pathological contexts. This review consolidates current knowledge on how environmental factors, tumor-derived signals, and intrinsic metabolic pathways collectively regulate DC development, subset differentiation, and functional adaptability.

View Article and Find Full Text PDF

Severe burns are a major global health concern, and are associated with long-term physical and psychological impairments, multi-organ dysfunction, and substantial morbidity and mortality. While burn injuries in adults trigger systemic immuno-metabolic alterations-characterized by white adipose tissue browning, elevated resting energy expenditure, widespread catabolism, and inflammation-these adaptive responses are considerably impaired in older adults, with molecular mechanisms behind these differences remaining largely unclear. As a key regulator of systemic metabolism, investigating the pathological role of adipose tissue (AT) postburn may reveal novel targets that could potentially improve patient outcomes.

View Article and Find Full Text PDF