Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

General procedures for the rhodium-catalyzed annulation of aryl/heteroaryl -pivaloyl hydroxamic acids and norbornadiene have been developed. Employing norbornadiene as an acetylene equivalent enables utilization of diverse heterocyclic substrates for this transformation which fail to react or undergo competitive Lossen rearrangement under previously reported conditions. Microwave heating significantly reduces reaction times compared to conventional protocols and allows a one-step process to be realized. The conditions described herein have been adapted for gram-scale synthesis and applied to the formal synthesis of Pfizer clinical candidates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.4c04334DOI Listing

Publication Analysis

Top Keywords

norbornadiene acetylene
8
acetylene equivalent
8
microwave-assisted synthesis
4
synthesis heterocycles
4
heterocycles rhodiumiii-catalyzed
4
rhodiumiii-catalyzed c-h
4
c-h activation
4
activation norbornadiene
4
equivalent general
4
general procedures
4

Similar Publications

General procedures for the rhodium-catalyzed annulation of aryl/heteroaryl -pivaloyl hydroxamic acids and norbornadiene have been developed. Employing norbornadiene as an acetylene equivalent enables utilization of diverse heterocyclic substrates for this transformation which fail to react or undergo competitive Lossen rearrangement under previously reported conditions. Microwave heating significantly reduces reaction times compared to conventional protocols and allows a one-step process to be realized.

View Article and Find Full Text PDF

Extension of the π-system of monoaryl-substituted norbornadienes with acetylene bridges: influence on the photochemical conversion and storage of light energy.

Beilstein J Org Chem

November 2024

Department of Chemistry-Biology, Center of Micro- and Nanochemistry and (Bio-)Technology (Cµ), University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.

The photochromic norbornadiene/quadricyclane pair is a promising system for molecular solar thermal (MOST) energy storage, with which solar energy may be converted, stored, and released as heat in one integral molecular system. Herein, we present the synthesis of mono-, bis-, and tris-norbornadiene derivatives with alkynylbenzene and alkynylnaphthalene core units, along with studies of their photochemical properties. The target compounds were synthesized by Sonogashira-Hagihara coupling reactions of 2-bromonorbornadiene and the corresponding arylacetylenes.

View Article and Find Full Text PDF

A broad study on [4 + 1]- and [4 + 2]-cycloaddition reactions of a thiazole-2-thione-based 1,4-diphosphinine (1) is reported, with a special focus on reversible reactions. Reactions of 1 with group 13 carbenoids NacNacM (M = Al and Ga) afford [4 + 1] adducts that can be classified as Al and Ga phosphides or as 7-metalla-1,4-norbornadienes. Reactions of 1 with alkynes and alkenes result in [4 + 2]-cycloaddition, affording 1,4-diphosphabarrelenes.

View Article and Find Full Text PDF

Molecular solar thermal (MOST) energy storage systems are getting increased attention related to renewable energy storage applications. Particularly, 2,3-difunctionalized norbornadiene-quadricyclane (NBD-QC) switches bearing a nitrile (CN) group as one of the two substituents are investigated as promising MOST candidates thanks to their high energy storage densities and their red-shifted absorbance. Moreover, such NBD systems can be prepared in large quantities (a requirement for MOST-device applications) in flow through Diels-Alder reaction between cyclopentadiene and appropriately functionalized propynenitriles.

View Article and Find Full Text PDF

Ruthenium-Catalyzed [2 + 2] versus Homo Diels-Alder [2 + 2 + 2] Cycloadditions of Norbornadiene and Disubstituted Alkynes: A DFT Study.

ACS Omega

January 2021

Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada.

The ruthenium-catalyzed [2 + 2] and homo Diels-Alder [2 + 2 + 2] cycloadditions of norbornadiene with disubstituted alkynes are investigated using density functional theory (DFT). These DFT calculations provide a mechanistic explanation for observed reactivity trends with different functional groups. Alkynyl phosphonates and norbornadiene form the [2 + 2 + 2] cycloadduct, while other functionalized alkynes afford the respective [2 + 2] cycloadduct, in excellent agreement with experimental results.

View Article and Find Full Text PDF