Direct ammonia fuel cells (DAFCs) utilize ammonia's chemical energy and convert it into electricity through the electrocatalyzed ammonia oxidation reaction (AOR). To date, studies have focused on Pt-based anode materials; however due to limitations, research has shifted towards alternative materials. Previous research in our group has focused on oxidized Ni-based materials including Ni(OH) and NiOOH which show promising catalytic activity.
View Article and Find Full Text PDFDeveloping electrocatalysts for urea oxidation reaction (UOR) works toward sustainably treating urea-enriched water. Without a clear understanding of how UOR products form, advancing catalyst performance is currently hindered. This work examines the thermodynamics of UOR pathways to produce N, NO , and NO on a (0001) β-Ni(OH) surface using density functional theory with the computational hydrogen electrode model.
View Article and Find Full Text PDFAromatic chromophores possessing intramolecular hydrogen-bonds that can undergo excited-state intramolecular proton transfer (ESIPT) are critical tools for chemosensing/biosensing applications because they create large Stokes-shifted fluorescence with no overlap with the absorption spectrum to limit back-ground interferences. Classic ESIPT-active fluorophores, such as the 2-(2'-hydroxyphenyl) benzazole (HBX) series (X = NH, O, S), favor a ground-state (GS) enol (E) form that undergoes ESIPT to afford an excited-state (ES) keto (K) tautomer that generates red-shifted fluorescence. Herein, we have attached the HBX moiety to 6-methoxy-indanone (6MI) to create isomeric ( and ) ESIPT-active chalcone dyes and have characterized their photophysical properties in polar protic solvents (MeOH and glycerol (Gly)/MeOH mixtures) and a nonpolar aprotic (1,4-dioxane) solvent for comparison.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2022
Herein, we report on the facile synthesis of nanocomposite consisting of TiO and Au nanoparticles (NPs) via a tailored galvanic replacement reaction (GRR). The electrocatalytic activity of the synthesized TiO/Au nanocomposites for CO reduction was investigated in an aqueous solution using various electrochemical methods. Our results demonstrated that the TiO/Au nanocomposites formed through the GRR process exhibited improved catalytic activities for CO reduction, while generating more hydrocarbon molecules than the typical formation of CO in contrast to polycrystalline Au.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2022
Improving the activity and selectivity of heterogeneous metal electrocatalysts has been the primary focus of CO electroreduction studies, however, the stability of these materials crucial for practical application remains less understood. In our work, the impact of the reaction intermediates (RIs) on the energetics and mechanism of metal-atom migration is studied with a combination of density functional theory (DFT) and molecular dynamics (AIMD) on pure transition metals Cu, Ag, Au, Pd, as well as three CuPd ( = 1,2, and 3) alloys. Reaction intermediates (RIs) for the CO reduction reaction, H evolution, and O reduction were considered.
View Article and Find Full Text PDFAn experimental and theoretical investigation on the iridium-catalyzed hydroacylation of C-substituted oxabenzonorbornadienes with salicylaldehyde is reported. Utilizing commercially available [Ir(COD)Cl] in the presence of 5 M KOH in dioxane at 65 °C, provided a variety of hydroacylated bicyclic adducts in up to a 95% yield with complete stereo- and regioselectivity. The mechanism and origins of selectivity in the iridium-catalyzed hydroacylation reaction has been examined at the M06/Def2TZVP level of theory.
View Article and Find Full Text PDFElectrochemical oxidation of urea provides an approach to prevent excess urea emissions into the environment while generating value by capturing chemical energy from waste. Unfortunately, the source of high catalytic activity in state-of-the-art doped nickel catalysts for urea oxidation reaction (UOR) activity remains poorly understood, hindering the rational design of new catalyst materials. In particular, the exact role of cobalt as a dopant in Ni(OH) to maximize the intrinsic activity towards UOR remains unclear.
View Article and Find Full Text PDFThe ruthenium-catalyzed [2 + 2] and homo Diels-Alder [2 + 2 + 2] cycloadditions of norbornadiene with disubstituted alkynes are investigated using density functional theory (DFT). These DFT calculations provide a mechanistic explanation for observed reactivity trends with different functional groups. Alkynyl phosphonates and norbornadiene form the [2 + 2 + 2] cycloadduct, while other functionalized alkynes afford the respective [2 + 2] cycloadduct, in excellent agreement with experimental results.
View Article and Find Full Text PDFJ Chem Theory Comput
July 2020
Decreasing the wall-clock time of quantum mechanics/molecular mechanics (QM/MM) calculations without sacrificing accuracy is a crucial prerequisite for widespread simulation of solution-phase dynamical processes. In this work, we demonstrate the use of embedded mean-field theory (EMFT) as the QM engine in QM/MM molecular dynamics (MD) simulations to examine polyolefin catalysts in solution. We show that employing EMFT in this mode preserves the accuracy of hybrid-functional DFT in the QM region, while providing up to 20-fold reductions in the cost per SCF cycle, thereby increasing the accessible simulation time-scales.
View Article and Find Full Text PDFPhys Chem Chem Phys
April 2020
Rational design of materials that efficiently convert electrical energy into chemical bonds will ultimately depend on a thorough understanding of the electrochemical interface at the atomic level. Towards this goal, the use of density functional theory (DFT) at the generalized gradient approximation (GGA) level has been applied widely in the past 15 years. In the calculation of electrochemical reaction energetics using GGA-DFT, it is frequently implicitly assumed that ions in the Helmholtz plane have unit charge.
View Article and Find Full Text PDFElectrochemical CO[Formula: see text] reduction is a potential route to the sustainable production of valuable fuels and chemicals. Here, we perform CO[Formula: see text] reduction experiments on Gold at neutral to acidic pH values to elucidate the long-standing controversy surrounding the rate-limiting step. We find the CO production rate to be invariant with pH on a Standard Hydrogen Electrode scale and conclude that it is limited by the CO[Formula: see text] adsorption step.
View Article and Find Full Text PDFA detailed atomic-scale description of the electrochemical interface is essential to the understanding of electrochemical energy transformations. In this work, we investigate the charge of solvated protons at the Pt(111) | HO and Al(111) | HO interfaces. Using semi-local density-functional theory as well as hybrid functionals and embedded correlated wavefunction methods as higher-level benchmarks, we show that the effective charge of a solvated proton in the electrochemical double layer or outer Helmholtz plane at all levels of theory is fractional, when the solvated proton and solvent band edges are aligned correctly with the Fermi level of the metal (E).
View Article and Find Full Text PDFSingle transition metal atoms embedded at single vacancies of graphene provide a unique paradigm for catalytic reactions. We present a density functional theory study of such systems for the electrochemical reduction of CO. Theoretical investigations of CO electrochemical reduction are particularly challenging in that electrochemical activation energies are a necessary descriptor of activity.
View Article and Find Full Text PDFThe electrochemical reduction of CO is known to be influenced by the identity of the alkali metal cation in the electrolyte; however, a satisfactory explanation for this phenomenon has not been developed. Here we present the results of experimental and theoretical studies aimed at elucidating the effects of electrolyte cation size on the intrinsic activity and selectivity of metal catalysts for the reduction of CO. Experiments were conducted under conditions where the influence of electrolyte polarization is minimal in order to show that cation size affects the intrinsic rates of formation of certain reaction products, most notably for HCOO, CH, and CHOH over Cu(100)- and Cu(111)-oriented thin films, and for CO and HCOO over polycrystalline Ag and Sn.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2015
The Al-air battery possesses high theoretical specific energy (4140 W h/kg) and is therefore an attractive candidate for vehicle propulsion. However, the experimentally observed open-circuit potential is much lower than what bulk thermodynamics predicts, and this potential loss is typically attributed to corrosion. Similarly, large Tafel slopes associated with the battery are assumed to be due to film formation.
View Article and Find Full Text PDFTo examine the impact of metal moieties that have different triplet energies on the photoisomerization of B(ppy)Mes2 compounds (ppy = 2-phenyl pyridine, Mes = mesityl), three metal-functionalized B(ppy)Mes2 compounds, Re-B, Au-B, and Pt-B, have been synthesized and fully characterized. The metal moieties in these three compounds are Re(CO)3(tert-Bu2 bpy)(C≡C), Au(PPh3)(C≡C), and trans-Pt(PPh3)2(C≡C)2, respectively, which are connected to the ppy chelate through the alkyne linker. Our investigation has established that the Re(I) unit completely quenches the photoisomerization of the boron unit because of a low-lying intraligand charge transfer/MLCT triplet state.
View Article and Find Full Text PDFThe new N,C-chelate boron compounds B(2-phenylazolyl)Mes2 [Mes = mesityl; azolyl = benzothiazolyl (1a), 4-methylthiazolyl (2a), benzoxazolyl (3a), benzimidazolyl (4a)] undergo an unprecedented multistructural transformation upon light irradiation or heating, sequentially producing isomers b, c, d, and e. The dark isomers b generated by photoisomerization of a undergo a rare thermal intramolecular H-atom transfer (HAT), reducing the azole ring and generating new isomers c, which are further transformed into isomers d. Remarkably, isomers d can be converted to their diastereomers e quantitatively by heating, and e can be converted back to d by irradiation at 300 nm.
View Article and Find Full Text PDFC,C-chelate dimesitylboron (BMes(2)) compounds containing an N-heterocyclic carbene (NHC) donor have been obtained. Single-crystal X-ray diffraction analyses established that the boron atom in these compounds is bound by four carbon atoms in a distorted tetrahedral geometry. Compared to previously reported N,C-chelate dimesitylboron compounds, the new C,C-chelate boron compounds have a much larger HOMO-LUMO energy gap (>3.
View Article and Find Full Text PDF