Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Competing risks data in clinical trial or observational studies often suffer from cluster effects such as center effects and matched pairs design. The proportional subdistribution hazards (PSH) model is one of the most widely used methods for competing risks data analyses. However, the current literature on the PSH model for clustered competing risks data is limited to covariate-independent censoring and the unstratified model. In practice, competing risks data often face covariate-dependent censoring and have the non-PSH structure. Thus, we propose a marginal stratified PSH model with covariate-adjusted censoring weight for clustered competing risks data. We use a marginal stratified proportional hazards model to estimate the survival probability of censoring by taking clusters and non-proportional hazards structure into account. Our simulation results show that, in the presence of covariate-dependent censoring, the parameter estimates of the proposed method are unbiased with approximate 95% coverage rates. We apply the proposed method to stem cell transplant data of leukemia patients to evaluate the clinical implications of donor-recipient HLA matching on chronic graft-versus-host disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708822 | PMC |
http://dx.doi.org/10.1080/03610926.2024.2329771 | DOI Listing |