Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Intraoperative physiologic parameters could offer predictive utility in evaluating risk of adverse postoperative events yet are not included in current standard risk models. This study examined whether the inclusion of continuous intraoperative data improved machine learning model predictions for multiple outcomes after coronary artery bypass grafting, including 30-day mortality, renal failure, reoperation, prolonged ventilation, and combined morbidity and mortality (MM).
Methods: The Society of Thoracic Surgeons (STS) database features and risk scores were combined with retrospectively gathered continuous intraoperative data from patients. Risk models were developed for each outcome by training a logistic regression classifier on intraoperative data using 5-fold cross-validation. STS risk scores were included as offset terms in the models.
Results: Compared with the STS Risk Calculator, models developed using a combination of the intraoperative features and the STS preoperative risk score had improved mean area under the receiver operating characteristic curve for prolonged ventilation (0.750 [95% CI, 0.690-0.809] vs 0.800 [95% CI, 0.750-0.851]) and MM (0.695 [95% CI, 0.644-0.746] vs 0.724 [95% CI, 0.673-0.775]). Additionally, models developed using intraoperative features had improved calibration, measured with Brier score, for prolonged ventilation (0.060 [95% CI, 0.050-0.070] vs 0.055 [95% CI, 0.045-0.065]) and MM (0.092 [95% CI, 0.081-0.103] vs 0.087 [95% CI, 0.075-0.098]).
Conclusions: The inclusion of time series intraoperative data in risk models may improve early postoperative care by identifying patients who require closer monitoring postoperatively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708469 | PMC |
http://dx.doi.org/10.1016/j.atssr.2024.02.005 | DOI Listing |