A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Intraoperative Features Improve Model Risk Predictions After Coronary Artery Bypass Grafting. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Intraoperative physiologic parameters could offer predictive utility in evaluating risk of adverse postoperative events yet are not included in current standard risk models. This study examined whether the inclusion of continuous intraoperative data improved machine learning model predictions for multiple outcomes after coronary artery bypass grafting, including 30-day mortality, renal failure, reoperation, prolonged ventilation, and combined morbidity and mortality (MM).

Methods: The Society of Thoracic Surgeons (STS) database features and risk scores were combined with retrospectively gathered continuous intraoperative data from patients. Risk models were developed for each outcome by training a logistic regression classifier on intraoperative data using 5-fold cross-validation. STS risk scores were included as offset terms in the models.

Results: Compared with the STS Risk Calculator, models developed using a combination of the intraoperative features and the STS preoperative risk score had improved mean area under the receiver operating characteristic curve for prolonged ventilation (0.750 [95% CI, 0.690-0.809] vs 0.800 [95% CI, 0.750-0.851]) and MM (0.695 [95% CI, 0.644-0.746] vs 0.724 [95% CI, 0.673-0.775]). Additionally, models developed using intraoperative features had improved calibration, measured with Brier score, for prolonged ventilation (0.060 [95% CI, 0.050-0.070] vs 0.055 [95% CI, 0.045-0.065]) and MM (0.092 [95% CI, 0.081-0.103] vs 0.087 [95% CI, 0.075-0.098]).

Conclusions: The inclusion of time series intraoperative data in risk models may improve early postoperative care by identifying patients who require closer monitoring postoperatively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708469PMC
http://dx.doi.org/10.1016/j.atssr.2024.02.005DOI Listing

Publication Analysis

Top Keywords

intraoperative data
16
intraoperative features
12
risk models
12
prolonged ventilation
12
models developed
12
risk
9
intraoperative
8
coronary artery
8
artery bypass
8
bypass grafting
8

Similar Publications