A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Flexible Morphological Regulation of Photothermal Nanodrugs: Understanding the Relationship between the Structure, Photothermal Effect, and Tumoral Biodistribution. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The morphology of nanodrugs is of utmost importance in photothermal therapy because it directly influences their physicochemical behavior and biological responses. However, clarifying the inherent relationship between morphology and the resultant properties remains challenging, mainly due to the limitations in the flexible morphological regulation of nanodrugs. Herein, we created a range of morphologically controlled nanoassemblies based on poly(ethylene glycol)--poly(d,l-lactide) (PEG-PLA) block copolymer building blocks, in which the model photosensitizer phthalocyanine was incorporated. Four different topologies were compared, namely, spherical vesicles, bowl-shaped vesicles, rodlike micelles, and vesicular tubes. The photothermal properties and tumoral biodistribution were investigated, revealing their relationship with the particle morphology. Finally, the tumor ablation capability of the optimized nanodrugs was demonstrated. This study represents a systematic study of the morphologically discrete regulation of nanodrugs, highlighting the importance of customization of supramolecular photothermal nanodrugs toward clinical antitumor therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760176PMC
http://dx.doi.org/10.1021/acsnano.4c15587DOI Listing

Publication Analysis

Top Keywords

flexible morphological
8
morphological regulation
8
photothermal nanodrugs
8
tumoral biodistribution
8
regulation nanodrugs
8
nanodrugs
6
photothermal
5
regulation photothermal
4
nanodrugs understanding
4
understanding relationship
4

Similar Publications