98%
921
2 minutes
20
Liquid cell transmission electron microscopy (LCTEM) is a powerful technique for investigating crystallisation dynamics with nanometre spatial resolution. However, probing phenomena occurring in liquids while mixing two precursor solutions has proven extremely challenging, requiring sophisticated liquid cell designs. Here, we demonstrate that introducing and withdrawing solvents in sequence makes it possible to maintain optimal imaging conditions while mixing liquids in a commercial liquid cell. We succeeded in visualising a fast nanoscale crystallisation mechanism when an organic molecule of R-BINOL-CN dissolved in chloroform interacts with methanol. The scanning transmission electron microscopy images recorded in real-time during the interaction of the two volatile solvents reveal the formation of chain-like structures of R-BINOL-CN particles, whereas they coalesce to form single large particles when methanol is absent. Our approach of mixing liquids establishes a platform for novel LCTEM studies of a wide range of electron-beam-sensitive materials, including drug molecules, polymers and molecular amphiphiles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718259 | PMC |
http://dx.doi.org/10.1038/s42004-025-01407-3 | DOI Listing |
Cell Rep Methods
July 2025
Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China; Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Agriculture and Rural Affairs, Beijing, P.R. China; College of Informatics, Huazhong Agricult
We introduce a cell-free DNA (cfDNA) fragmentation pattern: the fragment dispersity index (FDI), which integrates information on the distribution of cfDNA fragment ends with the variation in fragment coverage, enabling precise characterization of chromatin accessibility in specific regions. The FDI shows a strong correlation with chromatin accessibility and gene expression, and regions with high FDI are enriched in active regulatory elements. Using whole-genome cfDNA data from five datasets, we developed and validated the FDI-oncology model, which demonstrates robust performance in early cancer diagnosis, subtyping, and prognosis.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
IQRAA Centre for Research and Development, IQRAA International Hospital and Research Centre, Kozhikode, Kerala, India.
Terminalia arjuna, an important medicinal plant in traditional Indian systems, has been extensively studied for its cardioprotective bark. However, limited attention has been given to its fruit, which contains several biologically active phytochemicals with potential antioxidant, anti-inflammatory, and immunomodulatory properties. This study aimed to isolate and partially purify phytoactive compounds from the fruit of T.
View Article and Find Full Text PDFIndian Pediatr
September 2025
Multidisciplinary Research Unit, RNT Medical College, Udaipur, Rajasthan, India.
Objective: To estimate the prevalence of various hemoglobinopathies among newborns, women in antenatal clinic and children presenting with signs and symptoms suggestive of sickle cell disease (SCD).
Methods: A hospital-based prospective study was conducted at a Centre of Excellence for SCD (COESCD). Dried blood spot (DBS) samples were collected for newborn screening using heel-prick and venous samples were used in the post-neonatal age group.
mSphere
September 2025
Leiden Institute of Chemistry and The Institute of Chemical Immunology, Leiden University, Leiden, the Netherlands.
Bacterial persisters are a subpopulation of cells that exhibit a transient non-susceptible phenotype in the presence of bactericidal antibiotic concentrations. This phenotype can lead to the survival and regrowth of bacteria after treatment, resulting in relapse of infections. It is also a contributing factor to antibacterial resistance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Materials Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
LiNiMnO (LNMO) is a promising material for the cathode of lithium-ion batteries (LiBs); however, its high operating voltage causes stability issues when used with carbonate battery electrolytes. Ionic liquids are a viable alternative to conventional carbonate solvents due to their thermal stability and electrochemical window. This work reports the performance of LNMO/Li half cells with an ionic liquid electrolyte (ILE) composed of 0.
View Article and Find Full Text PDF