Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Most previously reported susceptors for microwave welding are in powder form. In this study, a thin-film susceptor was employed due to its uniform heating rate and ease of handling. Silicon carbide nanowhisker (SiCNW) were incorporated into a poly(methyl methacrylate) (PMMA) matrix to create a nanocomposite thin film, which served as the susceptor. The microwave welding process involved three straightforward steps: fabrication of the PMMA/SiCNW nanocomposite thin film, application of the nanocomposite film to the target area, and subsequent microwave heating. Upon cooling, a robust microwave-welded joint was formed. The mechanical properties and microstructure of the welded joints were characterized using single-lap shear tests, three-point bending tests, and scanning electron microscopy. Results demonstrated that the shear strength and elastic modulus of the welded joints were optimized with increased heating time and SiCNW filler loading. This optimization is attributed to the formation of a SiCNW-filled polypropylene (PP) nanocomposite layer of increasing thickness at the welded joint interface. However, the incorporation of SiCNW also constrained the mobility of the PP chains, reducing the joint's flexibility. Furthermore, the welded joint formed with the PMMA/SiCNW nanocomposite thin-film susceptor exhibited an 18.82% improvement in shear strength compared to joints formed with a powdered SiCNW susceptor. This study not only demonstrates the potential of PMMA/SiCNW nanocomposite thin films as efficient susceptors for microwave welding but also paves the way for developing high-performance polymer-based composite joints with improved mechanical properties for applications in the automotive, aerospace, and construction industries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ada7ff | DOI Listing |