A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Enhancing Microdomain Consistency in Polymer Electrolytes towards Sustainable Lithium Batteries. | LitMetric

Enhancing Microdomain Consistency in Polymer Electrolytes towards Sustainable Lithium Batteries.

Angew Chem Int Ed Engl

State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polymer electrolytes incorporated with fillers possess immense potential for constructing the fast and selective Li conduction. However, the inhomogeneous distribution of the fillers usually deteriorates the microdomain consistency of the electrolytes, resulting in uneven Li flux, and unstable electrode-electrolyte interfaces. Herein, we formulate a solution-process chemistry to in situ construct gel polymer electrolytes (GPEs) with well-dispersed metal-organic frameworks (MOFs), leading to a uniform microdomain structure. Through the integration of X-ray computed tomography analyses and theoretical simulations, our research identifies that the improvement of microdomain consistency in GPEs is beneficial for enhancing its mechanical strength, homogenizing ionic/electronic field distribution and upgrading the interface stability with the elctrodes. Moreover, consistently spread MOFs bind effectively with Lewis-base anions of Li salts, enhancing Li kinetics. Owing to these advantages, the developed GPEs achieve a high conductivity of 1.51 mS cm and a Li transference number of 0.66, resulting in exceptional cyclability of lithium metal electrodes (over 1800 hours). Additionally, the solid-state NCM811//Li pouch batteries exhibit an impressive capacity retention of 94.2 % over 200 cycles with an N/P ratio of 1.69. This study emphasizes the significant impact of microdomain structural chemistry on the advancement of solid-state batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202417105DOI Listing

Publication Analysis

Top Keywords

microdomain consistency
12
polymer electrolytes
12
enhancing microdomain
4
consistency polymer
4
electrolytes
4
electrolytes sustainable
4
sustainable lithium
4
lithium batteries
4
batteries polymer
4
electrolytes incorporated
4

Similar Publications