98%
921
2 minutes
20
Whole utilization of okara has important economic value, but there are two technical barriers: coarse mouthfeel caused by insoluble dietary fiber (IDF) and undesirable "beany" off-odors. UV-A irradiation and/or microbial fermentation were used to modify okara. The results indicated that single and combined treatments increased the soluble dietary fiber (SDF) content. Saccharomyces cerevisiae fermentation (YUO), Lactiplantibacillus plantarum fermentation (LUO), and mixed fermentation (MUO) followed by UV-A irradiation of okara significantly reduced the IDF/SDF ratio to 2.48, 1.86 and 2.25, respectively. The modifications significantly reduced the lipid and total nitrogen contents and decreased the E-nose sensor values associated with beany odors. The combined treatment of microbial fermentation and UV-A irradiation partially destroyed the crystalline, resulting in a loose and porous surface, further enhanced the functional properties of water holding capacity, water solubility, antioxidant properties and cation exchange capacity. In particular, the DPPH and ABTS scavenging abilities of okara subject to microbial fermentation followed by UV-A irradiation were greater than that of other samples. These results indicate that the treatment sequence is very important for the functional properties of okara and microbial fermentation followed by UV-A irradiation is most conducive to improve the physicochemical properties and functionalities of okara.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2024.115445 | DOI Listing |
Int J Food Microbiol
September 2025
Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul, 08826, Republic of Korea. Electronic address:
This study explored the antimicrobial efficacy and mechanism of a combined treatment using chlorogenic acid (CGA) and UV-A (365 nm) irradiation against four major foodborne pathogens-Escherichia coli O157:H7, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus-in both buffer and acidic beverage matrices. The CGA + UVA treatment showed strong bactericidal effects, particularly in green plum juice, where complete inactivation of L. monocytogenes was achieved (> 8-log reduction).
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Mining and Materials Engineering, McGill University, 3610 Rue University, Montreal, Quebec, Canada H3A 0C5.
As the first-line chemotherapeutic for glioblastoma multiforme (GBM), Temozolomide (TMZ) suffers from rapid degradation in physiological fluid, making it difficult to deliver sufficient doses of active TMZ to GBM tumors without inducing severe side effects. By protecting TMZ and then controlling its release using an external stimulus, we can prevent its premature degradation, thereby increasing its active concentration at the tumor site. Here, we present a near-infrared (NIR) controlled system in which TMZ is protected within a polymer before its on-demand release.
View Article and Find Full Text PDFChemosphere
September 2025
Department of Environment Studies, Panjab University, Chandigarh, 160014, India. Electronic address:
The study introduces a sustainable and eco-friendly approach to the first-time biosynthesis of zinc oxide (ZnO) nanoparticles using Schizophyllum commune (S. commune), a wood-rotting fungus that is well known for its superior lignocellulose biodegradation ability. The unique enzymatic machinery and metabolites produced during the lignocellulose breakdown not only provide a natural reducing and stabilizing environment but also facilitate the controlled synthesis of ZnO nanoparticles without the need for hazardous chemicals, high-energy input, or complex reaction conditions.
View Article and Find Full Text PDFInorg Chem
September 2025
Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 250 68, Czech Republic.
Bisphenol-S (BPS) is a widespread toxic industrial pollutant and endocrine disruptor of growing environmental concern. This study investigates the use of porous nanoceria particles (CeO) functionalized with octahedral molybdenum clusters (Mo) for the removal of waterborne BPS through a combined mechanism of reactive adsorption and photodegradation. Although immobilization of Mo cluster reduced the overall surface area of CeO, BPS adsorption and partial decomposition in the dark were enhanced due to chemical specificity and surface interactions introduced by the Mo clusters.
View Article and Find Full Text PDFFront Immunol
August 2025
Department of Transfusion Medicine and Hemostaseology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Introduction: Extracorporeal photopheresis (ECP) is an immunomodulatory treatment option for different T cell-mediated diseases such as cutaneous T cell lymphoma (CTCL) and chronic graft-versus-host disease (GvHD). While in CTCL the polarization of T cells is shifted towards T helper cells type 1 (TH1) and an immune response against the lymphoma is induced, ECP in GvHD rather leads to the expansion of regulatory T cells (Treg). How ECP regulates the immune response dependent on the underlying disease is still not exactly known.
View Article and Find Full Text PDF