Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Two 3D/2D anionic metal-organic frameworks (MOFs), [Cu(HL)] () and [Mn(L)(DMF)] ( (DMF = ,-dimethylformamide), were synthesized by the solvothermal reaction of metal salts and 5'-(4-carboxyphenyl)-2',4',6'-triethyl-[1,1':3',1″-terphenyl]-4,4″-dicarboxylic acid (HL). Single-crystal X-ray diffraction analyses revealed that complex shows three-dimensional (3D) frameworks with a (3,6)-connected 3-fold interpenetrated topology with the Schläfli symbols of {4.6}{4.6.8}, whereas the topology of the two-dimensional (2D) architecture can be defined as 2-fold stacked layers with the Schläfli symbols of {4}{4.6.8} for complex . In addition, density functional theory calculations, together with UV-vis adsorption spectroscopy, zeta potential, effective aperture size analysis, TEM, and SEM, were also performed to determine the accurate adsorption sites and significant differences in dye adsorption for complexes and . Interestingly, UV-vis studies confirm that Mn-MOF displays remarkable adsorption efficiency for cationic rhodamine B, methylene blue, malachite green, and methyl green, and the removal rate reached 95.2, 95.0, 87.0, and 78.0%, respectively, while almost no adsorption capacity was detected for anionic cresol red and methyl orange. However, Cu-MOF failed to efficiently adsorb any selected dyes. Moreover, the magnetic properties were also investigated through experimental and theoretical calculations in detail, which revealed the weak and stronger antiferromagnetic interactions that occurred between Cu(II) and Mn(II) centers, respectively. Finally, this work provides the profound mechanisms for magnetism and dye adsorption.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.4c04705DOI Listing

Publication Analysis

Top Keywords

dye adsorption
12
magnetic properties
8
schläfli symbols
8
adsorption
7
insights mof-based
4
mof-based classic
4
classic configuration
4
configuration differences
4
differences effective
4
effective dye
4

Similar Publications

This study quantitatively evaluated the adsorption performance of natural bentonite for removing three dye classes-cationic (Basic dye: BEZACRYL RED GRL), anionic (Reactive dye: AVITERA LIGHT RED SE), and non-ionic (Disperse dye: BEMACRON BLUE HP3R) from synthetic textile wastewater. Batch adsorption experiments were conducted under varying conditions of contact time (15-90 min), adsorbent dosage (20-60 g L⁻), pH (4 and 12), and temperature (25-100 °C), with dye concentrations quantified by UV-Vis spectroscopy. At a contact time of 30 min and room temperature (25 °C), maximum removal efficiencies reached 99.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles as a promising tool for efficient separation of trace DNA via phosphate-mediated desorption.

Mikrochim Acta

September 2025

Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.

We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.

View Article and Find Full Text PDF

In this study, a novel hybrid hydrogel incorporating a scandium-based metal-organic framework (scandium-integrated MOF-hydrogel hybrid) was developed using scandium nitrate, 1,4-naphthalenedicarboxylic acid, oxidized pectin, and chitosan. The synthesized scandium-integrated MOF-hydrogel hybrid demonstrated remarkable dual-functionality in both the adsorption of hazardous dye pollutants and the inhibition of pathogenic bacteria commonly found in wastewater. Characterization of the scandium-integrated MOF-hydrogel hybrid was performed using FT-IR, XRD, SEM, EDAX, CHNO elemental, BET, and XPS analyses, confirming successful MOF integration and a porous, reactive surface.

View Article and Find Full Text PDF

The increasing pollution of water bodies from various industrial wastewater discharges has raised significant environmental concerns because these effluents contain toxic, nonbiodegradable compounds that pose serious risks to living organisms. In particular, the textile and pharmaceutical industries routinely use dyes that severely degrade water quality and lead to significant environmental issues. Therefore, effective removal of these dyes from industrial wastewater is crucial for mitigating pollution.

View Article and Find Full Text PDF

Mesoporous carbon materials were synthesized by using sucrose as a carbon source and hydrophilic Aerosil 380 as a hard template. A two-stage optimization process based on the response surface methodology using a central composite design (RSM-CCD) was employed to enhance the adsorption performance of the material for the crystal violet (CV) dye. The first stage of optimization yielded a maximum adsorption capacity of 155.

View Article and Find Full Text PDF