Effects of Distiller's Grains Biochar and on the Remediation of Cd-Pb-Zn-Contaminated Soil and Growth of Sorghum-Sudangrass.

Microorganisms

Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Soil contamination with heavy metals is a significant environmental issue that adversely affects plant growth and agricultural productivity. Biochar and microbial inoculants have emerged as a promising approach to solving this problem, and previous studies have focused more on the remediation effects of single types of materials on heavy metal soil pollution. This study examined the impact of both standalone and combined applications of distiller's grains biochar, thallus, and the bacterial supernatant on the availability of cadmium (Cd), lead (Pb), and zinc (Zn) in soil, its physicochemical features, and its enzyme activities; this study also examined the growth, physiological and biochemical characteristics, and heavy metal accumulation of Sorghum-sudangrass. The findings suggest that the application of distiller's grains biochar, thallus, and the bacterial supernatant can improve the soil's physical and chemical properties and enhance soil enzyme activity while reducing the availability of heavy metals in the soil. Furthermore, the addition of these materials promoted plant growth, increased stress resistance, and significantly decreased the accumulation of heavy metals in the plants. A thorough analysis of the results shows that applying 0.025% thallus along with 4.4% distiller's grains biochar produced the best results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676423PMC
http://dx.doi.org/10.3390/microorganisms12122592DOI Listing

Publication Analysis

Top Keywords

distiller's grains
16
grains biochar
16
heavy metals
12
plant growth
8
heavy metal
8
study examined
8
biochar thallus
8
thallus bacterial
8
bacterial supernatant
8
soil
6

Similar Publications

Livestock grazing endophyte-infected (E+) tall fescue can exhibit persistent systemic vasoconstriction and fescue toxicosis. Isoflavones in legumes, most notably red clover (RC), are known hypotensive agents. The objective of the experiment was to evaluate the effect of isoflavone supplementation via RC hay, every day or every other day (QOD), on average daily gain (ADG) of steers grazing E+ tall fescue pastures and their physiological recovery after grazing when managed on a non-toxic diet (28-d).

View Article and Find Full Text PDF

This study evaluated the effects of dietary probiotic-fermented corn wet distillers grains (FCWDGs) on finishing pigs. Three strains (CGMCC21218, CCTCC2022073, and CICC10275) were used to ferment corn wet distillers grains, yielding FCWDGs-1, FCWDGs-2, and FCWDGs-3. A total of 128 130-day-old Anqing six white pigs were randomly assigned to four groups: a control group and groups supplemented with 6% FCWDGs-1 (T1), FCWDGs-2 (T2), and FCWDGs-3 (T3).

View Article and Find Full Text PDF

Introduction: Rising global populations and climate change necessitate increased agricultural productivity. Most studies on rice panicle detection using imaging technologies rely on single-time-point analyses, failing to capture the dynamic changes in panicle coverage and their effects on yield. Therefore, this study presents a novel temporal framework for rice phenotyping and yield prediction by integrating high-resolution RGB imagery with deep learning-based semantic segmentation.

View Article and Find Full Text PDF

In the field of intelligent manufacturing, image anomaly detection plays a pivotal role in automated product quality inspection. Most existing anomaly detection methods are adept at capturing local features of images, achieving high detection accuracy for structural anomalies such as cracks and scratches. However, logical anomalies typically appear normal within local regions of an image and are difficult to represent well by the anomaly score map, requiring the model to possess the capability to extract global context features.

View Article and Find Full Text PDF

In embedding systems, protein-polysaccharide complexes can be utilized as wall materials to improve the bioavailability and activity of bioactive substances during delivery. This study used the antisolvent precipitation method to manufacture gliadin from highland barley distillers' grains (HBDGG)-chitosan (Cs) nanoparticles. Using a variety of characterization techniques, the microstructure and interaction mechanism of HBDGG-Cs nanoparticles were examined, and their stability was assessed.

View Article and Find Full Text PDF