98%
921
2 minutes
20
Mountain apricot () is an important fruit tree variety, and has a wide range of planting and application value in China and even the world. However, the current research on the suitable distribution area of is still inconclusive. In this study, we retrieved distribution data for in China from the Global Biodiversity Information Facility (GBIF), and identified six key environmental factors influencing its distribution through cluster analysis. Using these six selected climate factors and distribution points in China, we applied the maximum entropy model (MaxEnt) to evaluate 1160 candidate models for parameter optimization. The final results predict the potential distribution of under the current climate as well as two future climate scenarios (SSPs126 and SSPs585). This study shows that the model optimized with six key climate factors (AUC = 0.897, TSS = 0.658) outperforms the full model using nineteen climate factors (AUC = 0.894, TSS = 0.592). Under the high-emission scenario (SSPs585), the highly suitable habitat for is expected to gradually shrink towards the southeast and northwest, while expanding in the northeast and southwest. After the 2050s, highly suitable habitats are projected to completely disappear in Shandong, while new suitable areas may emerge in Tibet. Additionally, the total area of suitable habitat is projected to increase in the future, with a more significant expansion under the high-emission scenario (SSPs585) compared to the low-emission scenario (SSPs126) (7.33% vs. 0.16%). Seasonal changes in precipitation are identified as the most influential factor in driving the distribution of .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672940 | PMC |
http://dx.doi.org/10.3390/biology13120973 | DOI Listing |
J Hum Evol
September 2025
Sustainability Solutions Research Lab, University of Pannonia, Egyetem utca 10, H-8200, Veszprém, Hungary. Electronic address:
Denisovans contributed notably to the genomes of present-day East and Southeast Asians. However, the relationship between the inhabited paleohabitats and the adaptive genetic traits related to infections in modern humans remains underexplored. This study uses geospatial techniques to analyze climatic factors associated with three Denisovan archaeological sites linked to nine specimens.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
School of the Environment, The University of Queensland, Brisbane, Queensland 4072, Australia.
As the global urban heat island (UHI) effect intensifies, understanding how UHI intensity responds to its influencing factors changes is critical for designing effective mitigation strategies. We focused on global megacities, shifted the UHI intensity assessment from physical indicators to human-related parameters, and then evaluated how human-centered UHI intensity responded to influencing factor change. We verified a significant discrepancy between traditional UHI intensity and human-centered UHI intensity worldwide, an average absolute difference of 1.
View Article and Find Full Text PDFJAMA Netw Open
September 2025
Division of Cardiology, Duke University Hospital, Durham, North Carolina.
Importance: Previous data suggest that the time changes associated with daylight savings time (DST) may be associated with an increased incidence of acute myocardial infarction (AMI).
Objective: To determine whether the incidence of patients presenting with AMI is greater during the weeks during or after DST and compare the in-hospital clinical events between the week before DST and after DST.
Design, Setting, And Participants: This cross-sectional study examined patients enrolled in the Chest Pain MI Registry from 2013 to 2022.
Environ Sci Pollut Res Int
September 2025
Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
The significant global energy consumption strongly emphasizes the crucial role of net-zero or green structures in ensuring a sustainable future. Considering this aspect, incorporating thermal insulation materials into building components is a well-accepted method that helps to enhance thermal comfort in buildings. Furthermore, integrating architectural components made from solid refuse materials retrieved from the environment can have significant environmental benefits.
View Article and Find Full Text PDFStress Biol
September 2025
Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
Understanding the genetic mechanism of cold adaptation in cashmere goats and dairy goats is very important to improve their production performance. The purpose of this study was to comprehensively analyze the genetic basis of goat adaptation to cold environments, clarify the impact of environmental factors on genome diversity, and lay the foundation for breeding goat breeds to adapt to climate change. A total of 240 dairy goats were subjected to genome resequencing, and the whole genome sequencing data of 57 individuals from 6 published breeds were incorporated.
View Article and Find Full Text PDF