Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biopharmaceuticals are the fastest-growing class of drugs in the healthcare industry, but their global reach is severely limited by their propensity for rapid aggregation. Currently, surfactant excipients such as polysorbates and poloxamers are used to prevent protein aggregation, which significantly extends shelf-life. Unfortunately, these excipients are themselves unstable, oxidizing rapidly into 100s of distinct compounds, some of which cause severe adverse events in patients. Here, the highly stable, well-defined, and modular nature of amphiphilic polyacrylamide-derived excipients is leveraged to isolate the key mechanisms responsible for excipient-mediated protein stabilization. With a library of compositionally identical but structurally distinct amphiphilic excipients, a new property is quantified, compositional dispersity, that is key to excipient performance and utilized this property to rationally design new ultra-stable surfactant excipients that increase the stability of a notoriously unstable biopharmaceutical, monomeric insulin, by an order of magnitude. This comprehensive and generalizable understanding of excipient structure-function relationships represents a paradigm shift for the formulation of biopharmaceuticals, moving away from trial-and-error screening approaches toward rational design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11848622PMC
http://dx.doi.org/10.1002/advs.202409604DOI Listing

Publication Analysis

Top Keywords

structure-function relationships
8
amphiphilic excipients
8
rational design
8
design ultra-stable
8
excipients
5
defining structure-function
4
relationships amphiphilic
4
excipients enables
4
enables rational
4
ultra-stable biopharmaceuticals
4

Similar Publications

Baroreflex activation therapy (BAT) improves functional status, quality of life, and exercise capacity in patients with heart failure with reduced ejection fraction; however, its direct effects on reversing adverse cardiac remodeling as assessed by improvements in cardiac structure, function, and coupling with the arterial system remain unclear. We present 2 cases of patients who initially presented with decompensated heart failure, and despite initial medical therapy and continued outpatient follow-up, were unable to tolerate full escalation of guideline-directed medical therapy. The patients remained symptomatic, with high biomarker levels, poor functional capacity, severe heart failure symptoms, and objectively had decreased stroke volume, low left ventricular ejection fraction, and high left ventricular mass.

View Article and Find Full Text PDF

Box of Lessons: An Open Educational Resource for Exploring Biomolecular Structure and Function.

J Coll Sci Teach

March 2025

RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey, United States.

Structure-function relationships are a core concept in many STEM disciplines. Most biology curricula introduce students to macromolecules, their building blocks, and other small molecules that play key roles in biological processes. However, the shapes, interactions, and functions of these molecules are often discussed using schematic diagrams, ignoring the vast amounts of three-dimensional structural and bioinformatics data freely available from public data resources.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to investigate the focal relationship between choroidal thickness and retinal sensitivity in myopic eyes.

Methods: Participants underwent swept-source optical coherence tomography (SS-OCT) imaging and microperimetry testing. Choroidal thicknesses were obtained by segmenting the SS-OCT scans using a deep-learning approach.

View Article and Find Full Text PDF

Developing Potent Therapeutics for Liver Cancer Chemoresistance via an RNA Nanotech and Series-Circuit-Christmas-Bulb Mechanism Targeting ABC Transporters.

Mol Pharm

September 2025

Division of Pharmaceutics and Pharmacology, College of Pharmacy; Center for RNA Nanotechnology and Nanomedicine; James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States.

Liver cancer, particularly hepatocellular carcinoma (HCC), poses significant treatment challenges due to chemoresistance and cancer recurrence. Similar to customs at the border, the liver detoxifies incoming chemicals via efflux pumps and overexpresses ATP-binding cassette (ABC) drug exporters, leading to chemoresistance. ABC contains a multihomosubunit structure and a revolving transport mechanism, actively effluxing drugs from cancer cells, thereby reducing intracellular drug accumulation and therapeutic efficacy.

View Article and Find Full Text PDF

Tailoring Active Sites in Amorphous NiFe-MOFs through Pyridine Ligand Coordination for Enhanced Oxygen Evolution Performance.

ACS Appl Mater Interfaces

September 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.

The development of high-performance, cost-effective non-noble metal catalysts for the oxygen evolution reaction (OER) is critical to advancing sustainable hydrogen production via water electrolysis. Herein, we report a facile and mild strategy for synthesizing amorphous bimetallic organic framework materials (NiFe-MOFs) using pyridine-modified threonine (l-PyThr) as an organic ligand. The optimized NiFe-PyThr-4:1 catalyst exhibits remarkable OER activity, requiring low overpotentials of only 162 and 222 mV to achieve current densities of 10 and 100 mA cm, respectively, along with a small Tafel slope of 34.

View Article and Find Full Text PDF