Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aim: To develop pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL) of CD40a to enhance anti-tumor activity in pancreatic cancer while reducing systemic toxicity.

Materials And Methods: A small library of nanoliposomes (NL) with various lipid compositions were synthesized to prepare pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL). Physical and functional characterization of pHTANL-CD40a was performed via dynamic light scattering (DLS), Transmission Electron Microscopy (TEM), confocal microscopy, and flow cytometry. In vivo studies were performed using PDAC (Panc02) transplanted mice. Tumor tissue was analyzed by flow cytometry, and plasma cytokines and liver enzymes were analyzed by ELISA.

Results: pHTANL-CD40a reduced tumor growth, enhanced tumor immune infiltration/activation, and enhanced survival compared to vehicle and free-CD40a. Importantly, pHTANL-CD40a treatment resulted in significantly lower systemic toxicity as indicated by unchanged body weight, minimal organ deformity, and reduced serum levels of liver enzyme alanine transaminase (ALT) and inflammatory cytokine IL-6.

Conclusion: pHTANL-CD40a is more effective than free CD40a in anti-tumor activity, especially in altering the TME immune landscape for a potential therapeutic benefit in combination with immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731328PMC
http://dx.doi.org/10.1080/17435889.2024.2446008DOI Listing

Publication Analysis

Top Keywords

phe-triggered membrane
8
membrane adhesive
8
adhesive nanoliposome
8
nanoliposome phtanl
8
anti-tumor activity
8
flow cytometry
8
enhanced safety
4
safety efficacy
4
efficacy profile
4
profile cd40
4

Similar Publications

Enhanced safety and efficacy profile of CD40 antibody upon encapsulation in pHe-triggered membrane-adhesive nanoliposomes.

Nanomedicine (Lond)

January 2025

Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.

Aim: To develop pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL) of CD40a to enhance anti-tumor activity in pancreatic cancer while reducing systemic toxicity.

Materials And Methods: A small library of nanoliposomes (NL) with various lipid compositions were synthesized to prepare pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL). Physical and functional characterization of pHTANL-CD40a was performed via dynamic light scattering (DLS), Transmission Electron Microscopy (TEM), confocal microscopy, and flow cytometry.

View Article and Find Full Text PDF

Acidic pHe regulates cytoskeletal dynamics through conformational integrin β1 activation and promotes membrane protrusion.

Biochim Biophys Acta Mol Basis Dis

July 2018

Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China. Electronic add

An acidic extracellular pH (pHe) in the tumor microenvironment has been suggested to facilitate tumor growth and metastasis. However, the molecular mechanisms by which tumor cells sense acidic signal to induce a transition to an aggressive phenotype remain elusive. Here, we showed that an acidic pHe (pH 6.

View Article and Find Full Text PDF