98%
921
2 minutes
20
Brain-resident macrophages, microglia, have been proposed to have an active role in synaptic refinement and maturation, influencing plasticity and circuit-level connectivity. Here we show that several neurodevelopmental processes previously attributed to microglia can proceed without them. Using a genetically modified mouse that lacks microglia (Csf1r), we find that intrinsic properties, synapse number and synaptic maturation are largely normal in the hippocampal CA1 region and somatosensory cortex at stages where microglia have been implicated. Seizure susceptibility and hippocampal-prefrontal cortex coherence in awake behaving animals, processes that are disrupted in mice deficient in microglia-enriched genes, are also normal. Similarly, eye-specific segregation of inputs into the lateral geniculate nucleus proceeds normally in the absence of microglia. Single-cell and single-nucleus transcriptomic analyses of neurons and astrocytes did not uncover any substantial perturbation caused by microglial absence. Thus, the brain possesses remarkable adaptability to execute developmental synaptic refinement, maturation and connectivity in the absence of microglia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802452 | PMC |
http://dx.doi.org/10.1038/s41593-024-01833-x | DOI Listing |
EMBO J
September 2025
Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
During a critical period of postnatal brain development, neural circuits undergo significant refinement coincident with widespread alternative splicing of hundreds of genes, which undergo altered splice site selection for the generation of isoforms essential for synaptic plasticity. Here, we reveal that neuronal activity-dependent phosphorylation of paxillin at its serine 119 (p-paxillin) acts as a molecular switch in the nucleus for the control of alternative splicing during this period. We show that following NMDA receptor activation, nuclear p-paxillin is recruited to nuclear speckles, where it interacts with splicing factors, such as U2AFs.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA.
Proprioceptive group Ia afferents detect muscle stretch to guide effortless and purposeful movement and make monosynaptic connections with spinal α-motor neurons to mediate reflexes, such as the stretch reflex. It is thought that proprioceptive Ia afferents target motor neurons of the same spinal segment; yet, how this specificity, if any, is established during early development is unknown. Using spinal cord electrophysiology preparations from neonatal mice of both sexes, we identified a developmental period during which proprioceptive la afferents evoke both segmental and intersegmental responses at monosynaptic latencies.
View Article and Find Full Text PDFFront Syst Neurosci
August 2025
Department of Chemistry, Acadia University, Wolfville, NS, Canada.
Psilocybin, a compound found in mushrooms, is emerging as a promising treatment for neurodegenerative and psychiatric disorders, including major depressive disorder. Its potential therapeutic effects stem from promoting neuroprotection, neurogenesis, and neuroplasticity, key factors in brain health. Psilocybin could help combat mild neurodegeneration by increasing synaptic density and supporting neuronal growth.
View Article and Find Full Text PDFActa Pharmacol Sin
August 2025
Lepu Medical Technology (Beijing) Co., Ltd, Beijing, 102200, China.
N-methyl-D-aspartate receptors (NMDARs) are calcium-permeable ionotropic glutamate receptors broadly expressed throughout the central nervous system, where they play crucial roles in neuronal development and synaptic plasticity. Among the various subtypes, the GluN1/GluN3A receptor represents a unique glycine-gated NMDAR with notably low calcium permeability. Despite its distinctive properties, GluN1/GluN3A remains understudied, particularly with respect to pharmacological tools development.
View Article and Find Full Text PDFBiomolecules
August 2025
Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore 169857, Singapore.
Brain organoid technology has revolutionized in vitro modeling of human neurodevelopment and disease, providing unprecedented insights into cortical patterning, neural circuit assembly, and pathogenic mechanisms of neurological disorders. Critically, human brain organoids uniquely recapitulate human-specific developmental processes-such as the expansion of outer radial glia and neuromelanin-that are absent in rodent models, making them indispensable for studying human brain evolution and dysfunction. However, a major bottleneck persists: Extended culture periods (≥6 months) are empirically required to achieve late-stage maturation markers like synaptic refinement, functional network plasticity, and gliogenesis.
View Article and Find Full Text PDF