A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Machine learning-based estimation of crude oil-nitrogen interfacial tension. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurate estimation of interfacial tension (IFT) between nitrogen and crude oil during nitrogen-based gas injection into oil reservoirs is imperative. The previous research works dealing with prediction of IFT of oil and nitrogen systems consider synthetic oil samples such n-alkanes. In this work, we aim to utilize eight machine learning methods of Decision Tree (DT), AdaBoost (AB), Random Forest (RF), K-nearest Neighbors (KNN), Ensemble Learning (EL), Support Vector Machine (SVM), Convolutional Neural Network (CNN) and Multilayer Perceptron Artificial Neural Network (MLP-ANN) to construct data-driven intelligent models to predict crude oil - nitrogen IFT based upon experimental data of real crude oils samples encountered in underground oil reservoirs. Several statistical indices and graphical approaches are used as accuracy performance indicators. The results show that virtually all the gathered datapoints are suitable for the purpose of model development. The sensitivity analysis indicated that pressure, temperature and crude oil API all negatively affect the IFT, with pressure being the most effective factor. The evaluation study proved that Random Forest is the most accurate developed intelligent model as it was characterized with acceptable R-squared (0.959), mean square error (1.65), average absolute relative error (6.85%) of unseen test datapoints as well as with correct trend prediction of IFT with regard to all input parameters of pressure, temperature and crude oil API. The developed model can be considered an accurate an easy-to-use tool for the prediction of crude oil/N IFT values for enhance oil recovery study optimization and upstream reservoir investigations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704299PMC
http://dx.doi.org/10.1038/s41598-025-85106-yDOI Listing

Publication Analysis

Top Keywords

crude oil
16
oil
9
interfacial tension
8
oil reservoirs
8
prediction ift
8
oil nitrogen
8
random forest
8
neural network
8
pressure temperature
8
temperature crude
8

Similar Publications