A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Knowledge domain and frontier trends of artificial intelligence applied in solid organ transplantation: A visualization analysis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Solid organ transplantation (SOT) is vital for end-stage organ failure but faces challenges like organ shortage and rejection. Artificial intelligence (AI) offers potential to improve outcomes through better matching, success prediction, and automation. However, the evolution of AI in SOT research remains underexplored. This study uses bibliometric analysis to identify trends, hotspots, and key contributors in the field.

Methods: 821 articles from the Web of Science Core Collection were exported for analysis. Microsoft Excel 2021 was used for descriptive statistics. VOSviewer, CiteSpace, Scimago Graphica, and Biblioshiny were used for bibliometric analysis. The ggalluvial package in R was utilized to create Sankey diagrams, and top articles were selected based on citation count.

Results: This analysis reveals the rapid expansion of AI in SOT. Key areas include robotic surgery, organ allocation, outcome prediction, immunosuppression management, and precision medicine. Robotic surgery has improved transplant outcomes. AI algorithms optimize organ matching and enhance fairness. Machine learning models predict outcomes and guide treatment, while AI-based systems advance personalized immunosuppression. AI in precision medicine, including diagnostics and imaging, is crucial for transplant success.

Conclusion: This study highlights AI's transformative potential in SOT, with significant contributions from countries like the USA, Canada, and the UK. Key institutions such as the University of Toronto and the University of Pittsburgh have played vital roles. However, practical challenges like ethical issues, bias, and data integration remain. Fostering international and interdisciplinary collaborations is crucial for overcoming these challenges and accelerating AI's integration into clinical practice, ultimately improving patient outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijmedinf.2024.105782DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
solid organ
8
organ transplantation
8
bibliometric analysis
8
robotic surgery
8
precision medicine
8
organ
6
analysis
5
knowledge domain
4
domain frontier
4

Similar Publications