Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Proteins can be represented in different data forms, including sequence, structure, and surface, each of which has unique advantages and certain limitations. It is promising to fuse the complementary information among them. In this work, we propose a framework called ProteinF3S for enzyme function prediction that fuses the complementary information across protein sequence, structure, and surface. To achieve more effective fusion, we propose a multi-scale bidirectional fusion strategy between protein structure and surface, in which the hierarchical features of a surface encoder and a structure encoder interact with each other bidirectionally. Based on these interactions, more distinctive features can be obtained. After that, we achieve further fusion by concatenating the sequence features with the features containing structure and surface information, so that better performance can be achieved. To validate our method, we conduct extensive experiments on tasks including enzyme reaction classification and enzyme commission number prediction. Our method achieves new state-of-the-art performance and shows that fusing different forms of data is effective in enzyme function prediction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697223 | PMC |
http://dx.doi.org/10.1093/bib/bbae695 | DOI Listing |