Essential and dual effects of Notch activity on a natural transdifferentiation event.

Nat Commun

Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U1298, Université de Strasbourg, Illkirch, France.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cell identity can be reprogrammed, naturally or experimentally, albeit with low frequency. Why some cells, but not their neighbours, undergo a cell identity conversion remains unclear. We find that Notch signalling plays a key role to promote natural transdifferentiation in C. elegans hermaphrodites. Endogenous Notch signalling endows a cell with the competence to transdifferentiate by promoting plasticity factors expression (hlh-16/Olig and sem-4/Sall). Strikingly, ectopic Notch can trigger additional transdifferentiation in vivo. However, Notch signalling can both promote and block transdifferentiation depending on its activation timing. Notch only promotes transdifferentiation during an early precise window of opportunity and signal duration must be tightly controlled in time. Our findings emphasise the importance of temporality and dynamics of the underlying molecular events preceding the initiation of natural cell reprogramming. Finally, our results support a model where both an extrinsic signal and the intrinsic cellular context combine to empower a cell with the competence to transdifferentiate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697417PMC
http://dx.doi.org/10.1038/s41467-024-55286-8DOI Listing

Publication Analysis

Top Keywords

notch signalling
12
natural transdifferentiation
8
cell identity
8
cell competence
8
competence transdifferentiate
8
notch
6
transdifferentiation
5
cell
5
essential dual
4
dual effects
4

Similar Publications

Molecular impact of NOTCH signaling dysregulation on ovarian cancer progression, chemoresistance, and taxane response.

Biomed Pharmacother

September 2025

Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic; Laboratory of Pharmacogenomics, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic. Electronic address:

Patients with epithelial ovarian cancer (EOC) face high mortality due to late diagnosis, recurrence, metastasis, and drug resistance. The NOTCH signaling pathway plays a critical role in cancer progression. This study analyzed NOTCH pathway deregulation in EOC patients and its response to taxane treatment in vitro and in vivo.

View Article and Find Full Text PDF

Introduction Neuroendocrine tumors (NETs) are a rare and heterogeneous group of neoplasms with both clinical and genetic diversity. The clinical applicability of molecular profiling using liquid biopsy for identifying actionable drug targets and prognostic indicators in patients with advanced NETs remains unclear. Methods In this study, we utilized a custom-made 37 genes panel of circulating tumor DNA (ctDNA) based on next-generation sequencing (NGS) in 47 patients with advanced NETs.

View Article and Find Full Text PDF

Uveitis is an inflammatory eye disease, and Longdan Xiegan Decoction (LXD) has been used to treat uveitis. However, the underlying mechanisms have not fully been addressed. The present study aimed to provide new insights into LXD ameliorating inflammatory response of experimental autoimmune uveitis (EAU) and regulating T helper (Th) cell differentiation via the interaction between microRNA (miRNA) and mRNA.

View Article and Find Full Text PDF

Endothelial to mesenchymal transition: a central mechanism in diabetes-induced vascular pathology.

Korean J Physiol Pharmacol

September 2025

Department of Physiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea.

Diabetes mellitus is a major global health concern associated with micro-and macrovascular complications. Among the diverse mechanisms that contribute to vascular dysfunction in diabetes, endothelial to mesenchymal transition (EndMT) has emerged as a key pathological process. EndMT involves the loss of endothelial cell characteristics and the acquisition of mesenchymal features, resulting in impaired endothelial function, increased fibrosis, and inflammation.

View Article and Find Full Text PDF

Machine learning-based identification of a transcriptomic blood signature discriminating between systemic autoimmunity and infection.

Med

August 2025

Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; Centre of New Biotechnologies and Precision Medicine (CNBPM), School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece. Electronic address: p

Background: Pathogenic responses against self and foreign antigens in systemic autoimmunity and infection, respectively, engage similar immunologic components, thus lacking distinguishing diagnostic biomarkers. Herein, we tested whether whole-blood transcriptome analysis discriminates autoimmune from infectious diseases.

Methods: We applied nested cross-validation methodology to tune and validate random forests, k-nearest neighbors, and support vector machines, using a new preprocessing method on 22 publicly available datasets, including 594 patients with a broad spectrum of systemic autoimmune diseases and 615 patients with diverse viral, bacterial, and parasitic infections.

View Article and Find Full Text PDF