98%
921
2 minutes
20
The human microbiota may influence the effectiveness of drug therapy by activating or inactivating the pharmacological properties of drugs. Computational methods have demonstrated their ability to screen reliable microbe-drug associations and uncover the mechanism by which drugs exert their functions. However, the previous prediction methods failed to completely exploit the neighborhood topologies of the microbe and drug entities and the diverse correlations between the microbe-drug entity pair and the other entities. In addition, they ignored the case that a microbe prefers to associate with its own specific drugs. A novel prediction method, PCMDA, was proposed by learning the neighborhood topologies of entities, inferring the association preferences, and integrating the features of each entity pair based on multiple biological premises. First, a knowledge graph consisting of microbe, disease, and drug entities is established to help the subsequent integration of the topological structure of entities and the similarity, interaction, and association relationship between any two entities. We generate various topological embeddings for each microbe (or drug) entity through random walks with neighborhood restarts on the microbe-disease-drug knowledge graph. Distance-level attention is designed to adaptively fuse neighborhood topologies covering multiple ranges. Second, the topological embeddings of entities imply the latent topological relationships between entities, while the relational embeddings of entities are derived from the semantics of connections among the entities. The topological structure and relational semantics of entities are fused by a designed knowledge graph learning module based on multilayer perceptron networks. Third, considering the preference that each microbe tends to especially associate with a group of drugs, information-level attention is designed to integrate the dependency between microbial preference and the candidate drug. Finally, a dual-gated network is established to encode the features of a microbe-drug entity pair from multiple biological perspectives. The comparative experiments with seven state-of-the-art methods demonstrate PCMDA's superior performance for microbe-drug association prediction. The case studies on three drugs and the recall rate evaluation for the top-ranked candidates indicate that PCMDA has the capability of discovering reliable candidate microbes associated with a drug. The datasets and source codes are freely available at https://github.com/pingxuan-hlju/pcmda.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.4c01544 | DOI Listing |
Curr Microbiol
September 2025
Department of Health Sciences, Università del Piemonte Orientale UPO, Corso Trieste 15/A, 28100, Novara, Italy.
A Python-scripted software tool has been developed to help study the heterogeneity of gene changes, markedly or moderately expressed, when several experimental conditions are compared. The analysis workflow encloses a scorecard that groups genes based on relative fold-change and statistical significance, providing additional functions that facilitate knowledge extraction. The scorecard reports highlight unique patterns of gene regulation, such as genes whose expression is consistently up- or down-regulated across experiments, all of which are supported by graphs and summaries to characterize the dataset under investigation.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
School of Software, Shandong University, Jinan 250101, Shandong, China.
Spatial transcriptomics (ST) reveals gene expression distributions within tissues. Yet, predicting spatial gene expression from histological images still faces the challenges of limited ST data that lack prior knowledge, and insufficient capturing of inter-slice heterogeneity and intra-slice complexity. To tackle these challenges, we introduce FmH2ST, a foundation model-based method for spatial gene expression prediction.
View Article and Find Full Text PDFIEEE Trans Comput Biol Bioinform
September 2025
Artificial intelligence (AI) based anticancer drug recommendation systems have emerged as powerful tools for precision dosing. Although existing methods have advanced in terms of predictive accuracy, they encounter three significant obstacles, including the "black-box" problem resulting in unexplainable reasoning, the computational difficulty for graphbased structures, and the combinatorial explosion during multistep reasoning. To tackle these issues, we introduce a novel Macro-Micro agent Drug sensitivity inference (MarMirDrug).
View Article and Find Full Text PDFBioinformatics
September 2025
Centre National de Recherche en Génomique Humaine, Institut François Jacob CEA Université Paris-Saclay.
Motivation: Graph Neural Network (GNN) models have emerged in many fields and notably for biological networks constituted by genes or proteins and their interactions. The majority of enrichment study methods apply over-representation analysis and gene/protein set scores according to the existing overlap between pathways. Such methods neglect knowledges coming from the interactions between the gene/protein sets.
View Article and Find Full Text PDFJ Comput Soc Sci
September 2025
Chair of Research Methods in Developmental and Educational Sciences, Institute of Education, University of Zurich, Zurich, Switzerland.
School curricula guide the daily learning activities of millions of students. They embody the understanding of the education experts who designed them of how to organize the knowledge that students should acquire in a way that is optimal for learning. This can be viewed as a learning 'theory' which is, nevertheless, rarely put to the test.
View Article and Find Full Text PDF