98%
921
2 minutes
20
Kir5.1 encoded by is an inwardly rectifying K channel subunit, and it possibly interacts with Kir4.2 subunit encoded by for assembling a Kir4.2/Kir5.1 heterotetramer in the basolateral membrane of mouse proximal tubule. We now used patch clamp technique to examine basolateral K channels of mouse proximal tubule (PT) and an immunoblotting/immunofluorescence (IF) staining microscope to examine Kir4.2 expression in wild-type and Kir5.1-knockout mice. IF staining shows that Kir4.2 was exclusively expressed in the proximal tubule, whereas Kir5.1 was expressed in the proximal tubule and distal nephrons including distal convoluted tubule. Immunoblotting showed that the expression of Kir4.2 monomer was lower in Kir5.1-knockout mice than that in the wild-type mice. In contrast, Kir4.1 monomer expression was increased in Kir5.1 knockout mice. IF images further demonstrated that the basolateral membrane staining of Kir4.2 was significantly decreased in Kir5.1 knockout mice. This is in sharp contrast to Kir4.1, which also interacts with Kir5.1 in the distal nephron, and IF images show that Kir4.1 membrane expression was still visible and unchanged in Kir5.1 knockout mice. The single channel recording detected a 50-pS inwardly rectifying K channel, presumably a Kir4.2/Kir5.1 heterotetramer, in the basolateral membrane of the proximal tubule of Kir5.1 wild-type mice. However, this 50-pS K channel was completely absent in the basolateral membrane of the proximal tubule of Kir5.1 knockout mice. Moreover, the membrane potential of the proximal tubule was less negative in Kir5.1 knockout mice than wild-type mice. We conclude that Kir5.1 is essential for assembling basolateral 50-pS K channel in proximal tubule and that deletion of Kir5.1 decreased Kir4.2 expression in the proximal tubule thereby decreasing the basolateral K conductance and the membrane potentials. Our study provides direct evidence for the notion that Kir5.1 is a key component of a 50-60 pS inwardly-rectifying-K channel, a main type K channel in the basolateral-membrane of PT. Also, we demonstrate that deletion of Kir5.1 decreased Kir4.2 protein expression including the basolateral-membrane in PT. Finally, depolarization of PT-membrane- potential in Kir5.1-knockout mice suggests that Kir4.2 alone is not able to sustain basolateral K conductance of the PT in the absence of Kir5.1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12207947 | PMC |
http://dx.doi.org/10.1152/ajprenal.00178.2024 | DOI Listing |
PLoS One
September 2025
Department of Urology, Kanazawa Medical University, Kahoku, Ishikawa, Japan.
Calcium oxalate (CaOx) stones are prevalent in urinary tract stone disease. While their formation can be induced in rats by administering ethylene glycol and vitamin D, the initial nucleation and formation processes are unclear. Here, we aimed to determine where CaOx crystals initially form, examine the associated histological and morphological changes, and clarify the genes whose expression varies at those sites and their function.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Nephrology, Chungnam National University, Daejeon, Republic of Korea.
Diabetic kidney disease (DKD) involves oxidative stress-driven damage to glomeruli (Gloms) and proximal convoluted tubules (PCT). NAD(P)H: quinone oxidoreductase 1 (NQO1) regulates redox balance, but its compartment-specific role remains unclear. Streptozotocin (STZ)-induced hyperglycemia increased albuminuria and foot process effacement, with NQO1 KO (NKO) mice exhibiting greater podocyte injury than WT, indicating exacerbated glomerular damage.
View Article and Find Full Text PDFiScience
September 2025
Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Fibroblasts can be transformed into myofibroblasts under pro-fibrotic conditions, which are characterized by increased contractility and reduced matrix degradation. The relationship between contractile activity and matrix degradation is not fully understood. To mimic physiological conditions, fibroblasts were cultured on a collagen gel with low rigidity.
View Article and Find Full Text PDFFront Cell Dev Biol
August 2025
Laboratory of Rheumatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
Introduction: Nephropathic cystinosis is a rare genetic disorder characterized by cystine accumulation in lysosomes that causes early renal dysfunction and progressive chronic kidney disease. Although several metabolic pathways, including oxidative stress and inflammation, have been implicated in the progression of renal parenchyma damage, the precise mechanisms driving its progression are not fully understood. Recent studies suggest that epigenetic modifications, particularly DNA methylation (DNAm), play a critical role in the development of chronic kidney disease.
View Article and Find Full Text PDFToxicol Appl Pharmacol
September 2025
Department of Pharmacological & Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, United States; Department of Pharmacy Practice & Translational Research, University of Houston College of Pharmacy, Houston, TX 77204, United States. Electronic address:
Vancomycin is one of the most commonly used parenteral antibiotics for treating drug-resistant bacterial infections, however, it is hindered by nephrotoxicity. We previously demonstrated that zileuton could delay the onset of vancomycin-associated nephrotoxicity in rats. Here, we sought to understand the mechanism(s) of zileuton renal protection.
View Article and Find Full Text PDF