98%
921
2 minutes
20
Background: Particulate matter (PM2.5) has been implicated in the development of membranous nephropathy (MN), but the underlying mechanism has yet to be fully understood. Oxidative stress is an essential factor of PM2.5-related toxicity and plays a significant role in the exposure of target antigenic epitopes in MN. This study aims to explore the pathogenic effects of PM2.5 in facilitating the crosstalk between the lung and kidney in MN.
Method: We examined oxidative stress indicators and the circulating levels of extracellular vesicles (EVs) in patients diagnosed with MN. Additionally, we assessed the expression of M-type phospholipase A2 receptor (PLA2R) in human lung tissue . To verify the impact of PM2.5 on PLA2R expression in the lung and the kidney, we stimulated human bronchial epithelial cells (Beas-2B) with lipopolysaccharide (LPS) or PM2.5. We then treated podocytes with the supernatants from PM2.5-exposed Beas-2B cells, intervening with GW4869, an inhibitor of EV release, to explore the role of EV-mediated cell-cell interactions.
Results: We found that elevated serum markers of oxidative stress and increased levels of PLA2R + EVs correlated positively with anti-PLA2R antibody levels in the serum of patients with idiopathic MN (IMN). Notably, PLA2R expression was significantly higher in the lung tissue of smokers, suggesting a possible link between PLA2R and oxidative stress. experiments demonstrated that PLA2R expression in Beas-2B cells was upregulated upon stimulation with LPS and PM2.5, an effect that could be reversed by the antioxidant glutathione (GSH). Furthermore, the supernatants from PM2.5-exposed Beas-2B cells were found to induce PLA2R overexpression and injury in podocytes, with this effect being mitigated by GW4869, an inhibitor of EVs release.
Conclusion: Our study contributes new knowledge to the understanding of how environmental pollutants, such as PM2.5, cause kidney damage through oxidative stress and EV-mediated signaling. The findings pave the way for further research into therapeutic strategies targeting oxidative stress and EVs, which could potentially improve patient outcomes of MN, particularly in high-risk populations like smokers and those exposed to air pollution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11688400 | PMC |
http://dx.doi.org/10.3389/fphar.2024.1516111 | DOI Listing |
Plant Dis
September 2025
Shenyang Agricultural University, College of Plant Protection, Nematology Institute of Northern China, Shenyang, China;
Root-knot nematodes (Meloidogyne spp.) cause catastrophic yield losses in global agriculture. This study identified itaconic acid (IA), through comparative metabolomic analysis (the study of small molecules in biological systems), as a key virulence-related metabolite produced by the fungus Trichoderma citrinoviride Snef1910.
View Article and Find Full Text PDFAnim Sci J
January 2025
Department of Animal Science, Bangladesh Agricultural University, Mymensingh, Bangladesh.
This study investigates the effects of L-carnitine on nuclear maturation and fertilization in cattle and goat oocytes. Ovaries were collected from females with poor reproductive efficiency in the tropical climate, and cumulus-oocyte complexes (COCs) were retrieved from large antral follicles. COCs were cultured with varying concentrations of L-carnitine (0, 0.
View Article and Find Full Text PDFCell Commun Signal
September 2025
Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr-University Bochum, Universitätsstr. 150, Building MA 5/52, Bochum, 44801, Germany.
Background: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by oxidative stress and progressive motor neuron degeneration. This study evaluates the potential neuroprotective effects of caffeine in the Wobbler mouse, an established model of ALS.
Methods: Wobbler mice received caffeine supplementation (60 mg/kg/day) via drinking water, and key parameters, including muscle strength, NAD metabolism, oxidative stress, and motor neuron morphology, were assessed at critical disease stages.
Nature
September 2025
Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Monocyte-derived macrophages (mo-macs) often drive immunosuppression in the tumour microenvironment (TME) and tumour-enhanced myelopoiesis in the bone marrow fuels these populations. Here we performed paired transcriptome and chromatin accessibility analysis over the continuum of myeloid progenitors, circulating monocytes and tumour-infiltrating mo-macs in mice and in patients with lung cancer to identify myeloid progenitor programs that fuel pro-tumorigenic mo-macs. We show that lung tumours prime accessibility for Nfe2l2 (NRF2) in bone marrow myeloid progenitors as a cytoprotective response to oxidative stress, enhancing myelopoiesis while dampening interferon response and promoting immunosuppression.
View Article and Find Full Text PDFNature
September 2025
Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.
Loss-of-function variants in the lipid transporter ABCA7 substantially increase the risk of Alzheimer's disease, yet how they impact cellular states to drive disease remains unclear. Here, using single-nucleus RNA-sequencing analysis of human brain samples, we identified widespread gene expression changes across multiple neural cell types associated with rare ABCA7 loss-of-function variants. Excitatory neurons, which expressed the highest levels of ABCA7, showed disrupted lipid metabolism, mitochondrial function, DNA repair and synaptic signalling pathways.
View Article and Find Full Text PDF