98%
921
2 minutes
20
Glioblastoma is an incurable brain malignancy. By the time of clinical diagnosis, these tumours exhibit a degree of genetic and cellular heterogeneity that provides few clues to the mechanisms that initiate and drive gliomagenesis. Here, to explore the early steps in gliomagenesis, we utilized conditional gene deletion and lineage tracing in tumour mouse models, coupled with serial magnetic resonance imaging, to initiate and then closely track tumour formation. We isolated labelled and unlabelled cells at multiple stages-before the first visible abnormality, at the time of the first visible lesion, and then through the stages of tumour growth-and subjected cells of each stage to single-cell profiling. We identify a malignant cell state with a neural crest-like gene expression signature that is highly abundant in the early stages, but relatively diminished in the late stage of tumour growth. Genomic analysis based on the presence of copy number alterations suggests that these neural crest-like states exist as part of a heterogeneous clonal hierarchy that evolves with tumour growth. By exploring the injury response in wounded normal mouse brains, we identify cells with a similar signature that emerge following injury and then disappear over time, suggesting that activation of an injury response program occurs during tumorigenesis. Indeed, our experiments reveal a non-malignant injury-like microenvironment that is initiated in the brain following oncogene activation in cerebral precursor cells. Collectively, our findings provide insight into the early stages of glioblastoma, identifying a unique cell state and an injury response program tied to early tumour formation. These findings have implications for glioblastoma therapies and raise new possibilities for early diagnosis and prevention of disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821533 | PMC |
http://dx.doi.org/10.1038/s41586-024-08356-2 | DOI Listing |
Neurotrauma Rep
August 2025
Department of Radiology, Weill Cornell Medicine; New York, New York, USA.
Traumatic brain injury (TBI) impairs attention and executive function, often through disrupted coordination between cognitive and autonomic systems. While electroencephalography (EEG) and pupillometry are widely used to assess neural and autonomic responses independently, little is known about how these systems interact in TBI. Understanding their coordination is essential to identify compensatory mechanisms that may support attention under conditions of neural inefficiency.
View Article and Find Full Text PDFDiabetes Metab Syndr Obes
September 2025
Department of Nephrology, Wuyi County First People's Hospital, Jinhua City, Zhejiang Province, People's Republic of China.
Purpose: Metabolic syndrome (MetS) is linked to adverse outcomes in chronic diseases, but its impact on acute kidney injury (AKI) in elderly critically ill patients remains unclear. This study aimed to evaluate the association between MetS and 90-day mortality in this population.
Patients And Methods: A retrospective analysis included 774 elderly patients (≥65 years) with AKI admitted to the ICU from January 2022 to December 2023.
Mater Today Bio
October 2025
Yunnan Key Laboratory of Breast Cancer Precision Medicine, Institute of Biomedical Engineering, Kunming Medical University, Kunming, 650500, Yunnan, China.
Achieving precise intratumoral accumulation and coordinated activation remains a major challenge in nanomedicine. Photothermal therapy (PTT) provides spatiotemporal control, yet its efficacy is hindered by heterogeneous distribution of PTT agents and limited synergy with other modalities. Here, we develop a dual-activation nanoplatform (IrO-P) that integrates exogenous photothermal stimulation with endogenous tumor microenvironment (TME)-responsive catalysis for synergistic chemodynamic therapy (CDT) and ferroptosis induction.
View Article and Find Full Text PDFJ Multidiscip Healthc
September 2025
Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia.
Background: Falls are a major cause of injury and death among the elderly, highlighting the need for effective and real-time detection systems. Embedded Internet of Health Things (IoHT) technologies integrating sensors, microcontrollers, and communication modules offer continuous monitoring and rapid response. However, the research landscape remains fragmented, and no comprehensive bibliometric review has been conducted.
View Article and Find Full Text PDF