Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We investigated a novel cancer immunotherapy strategy that effectively suppresses tumor growth in multiple solid tumor models and significantly extends the lifespan of tumor-bearing mice by introducing pathogen antigens into tumors via mRNA-lipid nanoparticles. The pre-existing immunity against the pathogen antigen can significantly enhance the efficacy of this approach. In mice previously immunized with BNT162b2, an mRNA-based COVID-19 vaccine encoding the spike protein of the SARS-CoV-2 virus, intratumoral injections of the same vaccine efficiently tagged the tumor cells with mRNA-expressed spike protein. This action rapidly mobilized the pre-existing memory immunity against SARS-CoV-2 to kill the cancer cells displaying the spike protein, while concurrently reprogramming the tumor microenvironment (TME) by attracting immune cells. The partial elimination of tumor cells in a normalized TME further triggered extensive tumor antigen-specific T cell responses through antigen spreading, eventually resulting in potent and systemic tumor-targeting immune responses. Moreover, combining BNT162b2 treatment with anti-PD-L1 therapy yielded a more substantial therapeutic impact, even in "cold tumor" types that are typically less responsive to treatment. Given that the majority of the global population has acquired memory immunity against various pathogens through infection or vaccination, we believe that, in addition to utilizing the widely held immune memory against SARS-CoV-2 via COVID-19 vaccine, mRNA vaccines against other pathogens, such as Hepatitis B Virus (HBV), Common Human Coronaviruses (HCoVs), and the influenza virus, could be rapidly transitioned into clinical use and holds great promise in treating different types of cancer. The extensive selection of pathogen antigens expands therapeutic opportunities and may also overcome potential drug resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11693766PMC
http://dx.doi.org/10.1038/s41421-024-00743-3DOI Listing

Publication Analysis

Top Keywords

memory immunity
12
spike protein
12
immune responses
8
pathogen antigens
8
covid-19 vaccine
8
tumor cells
8
tumor
6
guided fire
4
fire intratumoral
4
intratumoral administration
4

Similar Publications

Memory T cells, a sizable compartment of the mature immune system, enable enhanced responses upon re-infection with the same pathogen. We have recently shown that virus-experienced innate acting T (T) cells can modulate infectious or autoimmune diseases through TCR-independent IFN-γ production. However, how these cells arise remains unclear.

View Article and Find Full Text PDF

Previous epidemiological research has shown that immune cells have a significant impact on the progression and development of psoriatic arthritis (PsA). However, the causal relationship between immune cell characteristics and PsA remains uncertain. A bidirectional 2-sample Mendelian randomization analysis was conducted, using data from publicly available genome-wide association studies.

View Article and Find Full Text PDF

Long-duration spaceflight exposes astronauts to various stressors that can alter human physiology, potentially causing immediate and long-term health effects. These stressors can damage biomolecules, cells, tissues, and organs, leading to adverse outcomes. Developing adverse outcome pathways (AOPs) relevant to radiation exposure can guide research priorities and inform risk assessments of future space exploration activities.

View Article and Find Full Text PDF

Ashwagandha (Withania somnifera), a revered herb in Ayurvedic medicine, has gained significant scientific recognition for its potential to promote healthy aging. Traditionally used as a Rasayana or rejuvenator, this potent adaptogen helps the body manage stress and enhance vitality. This review synthesises extensive evidence for its multifaceted anti-aging capabilities, which target key hallmarks of the aging process.

View Article and Find Full Text PDF

Immunometabolism, the intersection of cellular metabolism and immune function, has revolutionized our understanding of T cell biology. Changes in cellular metabolism help guide the development of thymocytes and the transition of T cells from naive to effector, memory and tissue-resident states. Innate-like T cells are a unique group of T cells with special characteristics.

View Article and Find Full Text PDF