98%
921
2 minutes
20
Rare earth elements (REEs) are widely used in various high-tech industries. Developing affinity ligands that can detect and distinguish REEs is at the forefront of analytical chemistry. It is also interesting to understand the limits of natural biomolecules for the recognition of REEs. In this study, Sc was used as a target for the isolation of DNA aptamers, and an aptamer named Sc-1 was obtained. Using a thioflavin T (ThT) fluorescence assay, Sc-1 bound only to REEs, but not other metal ions. Additionally, the binding of Sc-1 to Sc exhibited slow kinetics, and the binding complex resisted dissociation by EDTA. Furthermore, Sc-1 displayed varying binding kinetics with trivalent lanthanide ions, allowing for the discrimination of 17 REEs into three major groups: (1) La, Ce, Pr, Nd, Sm, Eu, and Gd; (2) Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y; and (3) Sc. NMR spectroscopy confirmed binding-induced conformational changes in the aptamer. Using the fluorescence strand-displacement method, the true of the aptamer was measured to range from 0.6 to 258.5 nM for the REE ions, and it showed effective detection of Sc in real samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c13768 | DOI Listing |
Int J Biol Macromol
September 2025
School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China; School of Resources and Civil Engineering, GanNan University of Science and Technology, Ganzhou, 341000, China.
Herein, organic/inorganic multiple adsorption sites were constructed on halloysite to intensify the selective adsorption performance of the adsorbent for Al(III) in rare earth solutions. The adsorption heat behavior and thermodynamics of the composite for different ion systems were investigated using microcalorimetry. The results showed that chitosan formed a mesoporous membrane on the acid-treated calcined halloysite (HalH) substrate through a strong electron interaction between the nitrogen atom of the amino group and the oxygen atom of SiO structure on HalH.
View Article and Find Full Text PDFCurr Biol
September 2025
Institute at Brown for Environment and Society, Brown University, Providence, RI, USA.
Extreme climate events, such as storms, droughts or cold waves, wreak havoc on human and natural systems, but they can also catalyze rapid evolutionary change. Because such extreme events have historically been rare and difficult to forecast, studies of their biological impacts have mostly been serendipitous, limiting our understanding of their evolutionary consequences. However, with extreme climate events now increasing in frequency and severity due to human-induced global change, the opportunity - and need - to study their evolutionary consequences has grown.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Department of Botany, Jamia Hamdard, New Delhi 110062, India. Electronic address:
Lanthanum (La), being one of the crucial rare earth elements (REEs), plays an explicit role in agriculture as fertilizer. Due to its hormetic response, it exhibits dualistic behaviour in Triticum aestivum (wheat) plants. Abscisic acid (ABA) is a key plant hormone regulating various physiological and metabolomic responses in plants, but the interaction between La and ABA remains unclear.
View Article and Find Full Text PDFTop Magn Reson Imaging
October 2025
BIOSPACE LAB, Nesles-la-Vallée, France.
Aims: Cardiac tumors are aggressive and asymptomatic in early stages, causing late diagnosis and locoregional metastasis. Currently, the standard of care uses gadolinium-based contrast agents for MRI, and the associated hypersensitivity reactions are a significant concern, such as gadolinium deposition disease. In addition, the proximity of cardiac lesions closer to vital structures complicates surgical interventions.
View Article and Find Full Text PDFPLoS One
September 2025
School of Nuclear Science and Technology, University of South China Hengyang, Hunan, China.
With the rapid development of the nuclear medicine business worldwide, the removal of iodine-131 from specific contaminated environments to protect public health has important application prospects. In this study, the surface decontamination mechanism of Ce(IV)/HNO3 as a decontaminant for iodine-131-contaminated nonmetallic materials was investigated by using an orthogonal experimental method and scanning electron microscopy (SEM). During the preparation experiments with the contaminated materials, both quartz glass and ceramics reached peak activity concentration levels at 4 h of adsorption (contamination) by using immersion; the decontamination factor (DF) was selected as the test index for the decontamination experiments.
View Article and Find Full Text PDF