A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Superhydrophilic PVDF membrane fabricated on modified TiO/CS-SDAEM nanoparticles deposited on GA/CNTs hydrophilic layer to achieve self-cleaning photodegradation and low contamination rate for dyestuff separation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this work CS-SDAEM polymer brushes with long-chain structure were synthesized, and TiO/CS-SDAEM nanoparticles were prepared by modifying them on the TiO surface. The prepared modified membrane can effectively degrade dyes through photocatalysis and can reduce the contamination rate of the membrane during use. The separation membrane achieves efficient removal of contamination by self-cleaning. The results of the membrane surface analysis test show that the formation of coordination bonds between o-benzenetriol of GA and TiO, and the chemical reaction between CS and GA, which promote the stability between coating components. The results of filtering tests show that with the excellent anti-fouling performance of long-chain polymer brush, the photodegradability of TiO and a large number of hydrophilic groups contained in GA and CS, PVDF- TiO/CS-SDAEM membranes overcome the above shortcomings and achieve super-hydrophilicity, anti-fouling and self-cleaning. In addition, DFT model simulations of photocatalytic processes show that there is a charge transfer between CS and TiO, which increases the width of the high light absorption band and improves the efficiency of photodegradation. Modified membranes achieve efficient self-cleaning processes and low flux decline rates, which hold great promise for use in real wastewater application scenarios.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.139328DOI Listing

Publication Analysis

Top Keywords

tio/cs-sdaem nanoparticles
8
contamination rate
8
membrane
5
superhydrophilic pvdf
4
pvdf membrane
4
membrane fabricated
4
fabricated modified
4
modified tio/cs-sdaem
4
nanoparticles deposited
4
deposited ga/cnts
4

Similar Publications