A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Modulating π-bridge in donor-π-acceptor covalent organic frameworks for low-energy-light-driven photocatalytic reaction. | LitMetric

Modulating π-bridge in donor-π-acceptor covalent organic frameworks for low-energy-light-driven photocatalytic reaction.

J Colloid Interface Sci

Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China. Electronic address:

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Most of the photocatalytic reactions are currently driven by high-energy light (UV, blue light), which inevitably leads to side reactions and co-catalyst deactivation. Therefore, there is an urgent need to prepare novel photocatalysts with low-energy photocatalytic properties. Herein, we report a rational molecular design of covalent organic frameworks (COFs) equipped with donor-π-acceptor systems with different π-bridges (aromatic ring, mono- and bis-alkynyl). It was found that the COF with mono-alkynes as a π-bridge (TP-EDAE) can accelerate the rapid carrier migration even under low-energy light compared to the other two types of π-bridges (aromatic ring and bis-alkynyl), which was conducive to the photocatalytic redox reactions. As a result, the TP-EDAE samples showed high CO coupling activity and good substrate versatility under both high-energy light (blue light) and low-energy light (green light), especially the TP-EDAE samples displayed high stability with no obvious activity decay within five cycles under low-energy light. This work highlights the fundamental molecular design of advanced functionalized COFs with specific π-bridges for photocatalytic organic reactions under low-energy light.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.12.203DOI Listing

Publication Analysis

Top Keywords

low-energy light
16
light
9
covalent organic
8
organic frameworks
8
high-energy light
8
light blue
8
blue light
8
molecular design
8
π-bridges aromatic
8
aromatic ring
8

Similar Publications