Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Most of the photocatalytic reactions are currently driven by high-energy light (UV, blue light), which inevitably leads to side reactions and co-catalyst deactivation. Therefore, there is an urgent need to prepare novel photocatalysts with low-energy photocatalytic properties. Herein, we report a rational molecular design of covalent organic frameworks (COFs) equipped with donor-π-acceptor systems with different π-bridges (aromatic ring, mono- and bis-alkynyl). It was found that the COF with mono-alkynes as a π-bridge (TP-EDAE) can accelerate the rapid carrier migration even under low-energy light compared to the other two types of π-bridges (aromatic ring and bis-alkynyl), which was conducive to the photocatalytic redox reactions. As a result, the TP-EDAE samples showed high CO coupling activity and good substrate versatility under both high-energy light (blue light) and low-energy light (green light), especially the TP-EDAE samples displayed high stability with no obvious activity decay within five cycles under low-energy light. This work highlights the fundamental molecular design of advanced functionalized COFs with specific π-bridges for photocatalytic organic reactions under low-energy light.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.12.203 | DOI Listing |