Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Introduction: Nutrition is closely related to body health. A reasonable diet structure not only meets the body's needs for various nutrients but also effectively prevents many chronic diseases. However, due to the general lack of systematic nutritional knowledge, people often find it difficult to accurately assess the nutritional content of food. In this context, image-based nutritional evaluation technology can provide significant assistance. Therefore, we are dedicated to directly predicting the nutritional content of dishes through images. Currently, most related research focuses on estimating the volume or area of food through image segmentation tasks and then calculating its nutritional content based on the food category. However, this method often lacks real nutritional content labels as a reference, making it difficult to ensure the accuracy of the predictions.
Methods: To address this issue, we combined segmentation and regression tasks and used the Nutrition5k dataset, which contains detailed nutritional content labels but no segmentation labels, for manual segmentation annotation. Based on these annotated data, we developed a nutritional content prediction model that performs segmentation first and regression afterward. Specifically, we first applied the UNet model to segment the food, then used a backbone network to extract features, and enhanced the feature expression capability through the Squeeze-and-Excitation structure. Finally, the extracted features were processed through several fully connected layers to obtain predictions for the weight, calories, fat, carbohydrates, and protein content.
Results And Discussion: Our model achieved an outstanding average percentage mean absolute error (PMAE) of 17.06% for these components. All manually annotated segmentation labels can be found at https://doi.org/10.6084/m9.figshare.26252048.v1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685081 | PMC |
http://dx.doi.org/10.3389/fnut.2024.1469878 | DOI Listing |