98%
921
2 minutes
20
The pathogenic G361A variant of CRAF, associated with increased intrinsic kinase activity in Noonan syndrome (NS), remains poorly understood in terms of its molecular and structural impact on kinase activity. To elucidate the mechanistic implications of the glycine to alanine substitution at residue 361 in CRAF, we employed molecular dynamics simulations. Our findings reveal that this mutation predominantly affects the ATP binding pocket and critical intermolecular interactions within the active cleft that favors the phosphate transfer reaction. Notably, our data highlight significant alterations in key interactions involving Lys470/Asp486 and ATP.Mg in CRAF that are absent in wild-type CRAF. Additionally, we identified a novel interaction mode between Lys431 and γ-phosphate in wild-type CRAF, a residue evolutionarily conserved in CRAFs but not in related kinases such as BRAF, ARAF, and KSR1/2. Furthermore, observed shifts in the αC-helix and G-loop relative to the wild-type correlate with an enlarged ATP-binding cavity in the mutant, reflecting structural adaptations due to these mutations. Overall, these structural insights underscore the elevated intrinsic kinase activity of the CRAF variant and provide crucial mechanistic details that could inform the development of specific inhibitors targeting this variant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.26769 | DOI Listing |
Alzheimers Res Ther
September 2025
Department of Neurology, Saarland University, Kirrberger Straße, 66421, Homburg/Saar, Germany.
Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.
View Article and Find Full Text PDFSci China Life Sci
September 2025
State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Labora
Histone arginine methylation by protein arginine methyltransferases (PRMTs) is crucial for transcriptional regulation and is implicated in cancers. Despite their therapeutic potential, some PRMTs present challenges as drug targets due to their context-dependent activities. Here, we demonstrate that hypoxia triggers the rapid condensation of PRMT2, which is essential for its histone H3R8 asymmetric dimethylation (H3R8me2a) activity.
View Article and Find Full Text PDFEMBO Mol Med
September 2025
Department of Neurology, Columbia University, New York, NY, 10032, USA.
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by ubiquitous deficiency in the SMN protein. The identification of disease modifiers is key to understanding pathogenic mechanisms and broadening the range of targets for developing SMA therapies that complement SMN upregulation. Here, we report a cell-based screen that identified inhibitors of p38 mitogen-activated protein kinase (p38 MAPK) as suppressors of proliferation defects induced by SMN deficiency in mouse fibroblasts.
View Article and Find Full Text PDFCell Death Differ
September 2025
Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.
Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system (CNS) characterized by inflammatory demyelination and progressive neurodegeneration. Although current disease-modifying therapies modulate peripheral autoimmune responses, they are insufficient to fully prevent tissue specific neuroinflammation and long-term neuronal and oligodendrocyte loss. Growing evidence implicates various regulated cell death (RCD) pathways, including apoptosis, necroptosis, pyroptosis, and ferroptosis, not only as downstream consequences of chronic inflammation, but also as active drivers of demyelination, axonal injury, and glial dysfunction in MS.
View Article and Find Full Text PDFHandb Exp Pharmacol
September 2025
National Institute of Biological Sciences, Beijing, China.
G protein-coupled receptors (GPCRs) engage multiple transducers to regulate distinct physiological processes. These transducers include various G proteins subtypes, GPCR kinases (GRKs), and β-arrestins. In addition to promoting receptor desensitization, β-arrestins serve as scaffolds for signaling via non-G protein pathways.
View Article and Find Full Text PDF