A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Development of a high-performance pseudocapacitive composite via electroless deposition of silver nanoparticles on micro-sized silicon. | LitMetric

Development of a high-performance pseudocapacitive composite via electroless deposition of silver nanoparticles on micro-sized silicon.

Sci Rep

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, 03680, Ukraine.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An energy material has been developed using a one-step chemical reduction method, incorporating silver nanoparticles (AgNPs) that encapsulate micro-sized silicon (mSi) flakes. SEM investigation revealed complete encapsulation of silicon flakes by AgNP's dendritic structure, EDX confirmed the deposition of Ag on Si flakes. Raman spectroscopy confirmed the formation of silver and silicon oxides. In a three-cell configuration, the low equivalent series resistance and charge transfer resistance indicated that Ag served as the conductive channel for charge transfer. The CV curves displayed a 1.7 V voltage window attributed to amorphous SiO, which offered a significant specific capacitance of 330.6 F g at a scan rate of 5 mV s. The pseudocapacitive nature of the developed material, in comparison to other Ag-based composites and pseudocapacitive materials, achieved an energy density of 37.83 Wh kg and a power density of 6374 W kg at a current density of 7.5 A g in a three-cell configuration. The nanostructured Ag combined with mSi is suitable as a renewable charge storage material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685726PMC
http://dx.doi.org/10.1038/s41598-024-83808-3DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
8
micro-sized silicon
8
three-cell configuration
8
charge transfer
8
development high-performance
4
high-performance pseudocapacitive
4
pseudocapacitive composite
4
composite electroless
4
electroless deposition
4
deposition silver
4

Similar Publications