98%
921
2 minutes
20
Nitrogen is essential for rice growth and yield formation, but traditional methods for assessing nitrogen status are often labor-intensive and unreliable at high nitrogen levels due to saturation effects. This study evaluates the effectiveness of flavonoid content (Flav) and the Nitrogen Balance Index (NBI), measured using a Dualex sensor and combined with machine learning models, for precise nitrogen status estimation in rice. Field experiments involving 15 rice varieties under varying nitrogen application levels collected Dualex measurements of chlorophyll (Chl), Flav, and NBI from the top five leaves at key growth stages. Incremental analysis was performed to quantify saturation effects, revealing that chlorophyll measurements saturated at high nitrogen levels, limiting their reliability. In contrast, Flav and NBI remained sensitive across all nitrogen levels, accurately reflecting nitrogen status. Machine learning models, particularly random forest and extreme gradient boosting, achieved high prediction accuracy for leaf and plant nitrogen concentrations (R > 0.82), with SHAP analysis identifying NBI and Flav from the top two leaves as the most influential predictors. By combining Flav and NBI measurements with machine learning, this approach effectively overcomes chlorophyll-based saturation limitations, enabling precise nitrogen estimation across diverse conditions and offering practical solutions for improved nitrogen management in rice cultivation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683070 | PMC |
http://dx.doi.org/10.3389/fpls.2024.1518272 | DOI Listing |
J Clin Invest
September 2025
The University of Texas at Austin, Austin, United States of America.
Background: Following SARS-CoV-2 infection, ~10-35% of COVID-19 patients experience long COVID (LC), in which debilitating symptoms persist for at least three months. Elucidating biologic underpinnings of LC could identify therapeutic opportunities.
Methods: We utilized machine learning methods on biologic analytes provided over 12-months after hospital discharge from >500 COVID-19 patients in the IMPACC cohort to identify a multi-omics "recovery factor", trained on patient-reported physical function survey scores.
Proc Natl Acad Sci U S A
September 2025
Max Planck Institute for Solar System Research, Göttingen 37077, Germany.
Turbulent convection governs heat transport in both natural and industrial settings, yet optimizing it under extreme conditions remains a significant challenge. Traditional control strategies, such as predefined temperature modulation, struggle to achieve substantial enhancement. Here, we introduce a deep reinforcement learning (DRL) framework that autonomously discovers optimal control policies to maximize heat transfer in turbulent Rayleigh-Bénard convection.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
September 2025
Division of Plastic and Reconstructive Surgery, Neonatal and Pediatric Craniofacial Airway Orthodontics, Department of Surgery, Stanford University School of Medicine, 770 Welch Road, Palo Alto, CA, 94394, USA.
Background: Alveolar molding plate treatment (AMPT) plays a critical role in preparing neonates with cleft lip and palate (CLP) for the first reconstruction surgery (cleft lip repair). However, determining the number of adjustments to AMPT in near-normalizing cleft deformity prior to surgery is a challenging task, often affecting the treatment duration. This study explores the use of machine learning in predicting treatment duration based on three-dimensional (3D) assessments of the pre-treatment maxillary cleft deformity as part of individualized treatment planning.
View Article and Find Full Text PDFHepatol Int
September 2025
Department of Biomedical Informatics and Data Science, Yale School of Medicine, PO Box 208009, New Haven, CT, 06520-8009, USA.
Int J Cardiovasc Imaging
September 2025
Klinikum Fürth, Friedrich-Alexander-University Erlangen- Nürnberg, Fürth, Germany.
Myocarditis is an inflammation of heart tissue. Cardiovascular magnetic resonance imaging (CMR) has emerged as an important non-invasive imaging tool for diagnosing myocarditis, however, interpretation remains a challenge for novice physicians. Advancements in machine learning (ML) models have further improved diagnostic accuracy, demonstrating good performance.
View Article and Find Full Text PDF