98%
921
2 minutes
20
Metal ions, either essential or therapeutic, play critical roles in life processes or in the treatment of diseases. Proteins and enzymes are involved in metal homeostasis and the action of metallodrugs. Imaging and identifying these metal-binding proteins will facilitate the elucidation of metal-mediated life processes. The emerging research field of metallomics and metalloproteomics has significantly advanced our understanding of metal homeostasis and the roles that metals play in biology and medicine. Fluorescence-based metalloproteomics offers the possibility of not only visualization but also identification of metal-binding proteins in living cells and tissues. Herein, we summarize different strategies of labeling and tracking of metal-binding proteins with the aid of fluorescent probes. We highlight several examples as showcases of how this fluorescence-based metalloproteomics approach could be utilized in metallobiology and chemical biology. In conclusion, we also discuss the advantages and limitations of fluorescence-based metalloproteomics approaches and point out future directions of metalloproteomics including development of more sensitive and selective fluorescence probes, integration with other omics approaches, as well as application of emerging advanced super-resolution imaging techniques that utilize fluorescent molecules or proteins. We aim to attract more scientists to engage in this exciting field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672145 | PMC |
http://dx.doi.org/10.1021/jacsau.4c00879 | DOI Listing |
Magn Reson Lett
February 2025
State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
Rat sarcoma virus oncogene (RAS) proteins are of crucial oncogenic proteins and are involved in several essential intracellular processes. The RAS protein has an intrinsic metal binding site for Mg, which is important for the conformational stability of the active site. Recently, it was reported that a second metal ion binding site, located further from the active site in HRAS (Harvey RAS homolog), binds Ca with millimolar affinity.
View Article and Find Full Text PDFJ Mol Graph Model
September 2025
College of General Education, Kookmin University, Seoul, 02707, Republic of Korea. Electronic address:
Green fluorescent proteins (GFPs) are optical markers that are widely used in molecular and cell biology studies to track the location and function of biomolecules. Elucidating their structures will facilitate further engineering of these fluorescent proteins (FPs) to enhance their properties. AlphaFold3 (AF3) is a recently developed prediction tool that exhibits higher accuracy compared with other prediction tools, particularly in predicting protein-ligand interactions with state-of-the-art docking tools.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States.
Iron homeostasis is essential for the virulence of the opportunistic fungal pathogen . The cytosolic monothiol glutaredoxin GrxD was recently shown to play a critical role in iron metabolism via regulation of iron-sulfur (Fe-S) binding iron-responsive transcription factors and interaction with components of the cytosolic Fe-S cluster assembly pathway. Interestingly, the putative copper-binding metallothionein CmtA was also identified as a binding partner for GrxD; however, the metal-binding properties of both proteins and the nature of their interactions were unclear.
View Article and Find Full Text PDFRSC Adv
August 2025
Department of Chemistry, University of California, Davis One Shields Avenue Davis CA 95616 USA
Imbalances in cellular copper are increasingly implicated in metabolic disorders. Food-derived peptides are gaining attention for their ability to alleviate metabolic disease symptoms with little to no toxicity. In this work, we enriched copper-binding peptides from enzymatic digestions of rice bran protein hydrolysates Cu(ii)-based immobilized-metal affinity-based separations, identified the sequences by mass spectrometry, and performed physicochemical and sequence analysis of the enriched peptides.
View Article and Find Full Text PDFCarbon and zinc (Zn) metabolism are intrinsically connected in phototrophs, as crucial components involved in CO assimilation, like carbonic anhydrases, are highly abundant Zn proteins. Utilizing these and other proteins, the eukaryotic green algae can maintain phototrophic growth in low CO environments by inducing a carbon concentrating mechanism (CCM). In this work we show that Chlamydomonas dynamically increases its Zn content to accommodate the higher intracellular Zn demand in low CO environments.
View Article and Find Full Text PDF