Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The chlorinated paraffin (CP) monomer 1,2,5,6,9,10-Hexachlorodecane (CP-4) was subjected to in vitro biotransformation using human and carp liver microsomes. Five types of CP-4 metabolites (OH-, keto-, enol-, aldehyde- and carboxy-CP-4) were identified in human liver microsomer while only mono-OH-CP-4 was found in the carp liver microsomes. Kinetic studies revealed that the formation of mono-, di-, tri-hydroxylated CP-4, keto-, enol-, and aldehyde-CP-4 in human liver microsomes was best described by substrate inhibition models, whereas the formation of carboxylated CP-4 metabolites best fit the Michaelis-Menten model. Notably, keto-CP-4, enol-CP-4 and aldehyde-CP-4 were the predominant metabolites. The estimated V values for these metabolites were significantly higher in the human liver microsomes than in the carp liver microsomes. The intrinsic hepatic clearance (CL) of CP-4 was higher in humans than in carp, indicating species-specific differences in its metabolism. This study also highlighted potential toxicity concerns, with computational predictions showing varying degrees of acute oral toxicity for CP-4 and its metabolites. These findings indicate significant species-specific differences in the biotransformation of CP-4, emphasizing the potential health and environmental risks associated with chlorinated paraffins and their metabolites, and underscore the need for further research to address these concerns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2024.109235 | DOI Listing |