Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The biobased production of chemicals is essential for advancing a sustainable chemical industry. 1,5-Pentanediol (1,5-PDO), a five-carbon diol with considerable industrial relevance, has shown limited microbial production efficiency until now. This study presents the development and optimization of a microbial system to produce 1,5-PDO from glucose in Corynebacterium glutamicum via the l-lysine-derived pathway. Engineering began with creating a strain capable of producing 5-hydroxyvaleric acid (5-HV), a key precursor to 1,5-PDO, by incorporating enzymes from Pseudomonas putida (DavB, DavA, and DavT) and Escherichia coli (YahK). Two conversion pathways for further converting 5-HV to 1,5-PDO are evaluated, with the CoA-independent pathway-utilizing Mycobacterium marinum carboxylic acid reductase (CAR) and E. coli YqhD-proving greater efficiency. Further optimization continues with chromosomal integration of the 5-HV module, increasing 1,5-PDO production to 5.48 g L. An additional screening of 13 CARs identifies Mycobacterium avium K-10 (MAP1040) as the most effective, and its engineered M296E mutant further increases production to 23.5 g L. A deep-learning analysis reveals that Gluconobacter oxydans GOX1801 resolves the limitations of NADPH, allowing the final strain to produce 43.4 g L 1,5-PDO without 5-HV accumulation in fed-batch fermentation. This study demonstrates systematic approaches to optimizing microbial biosynthesis, positioning C. glutamicum as a promising platform for sustainable 1,5-PDO production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11967857 | PMC |
http://dx.doi.org/10.1002/advs.202412670 | DOI Listing |