Publications by authors named "Yu Jung Sohn"

Existing microbial engineering strategies-encompassing metabolic engineering, systems biology, and systems metabolic engineering-have significantly enhanced the potential of microbial cell factories as sustainable alternatives to the petrochemical industry by optimizing metabolic pathways. Recently, systems metabolic engineering, which integrates tools from synthetic biology, enzyme engineering, omics technology, and evolutionary engineering, has been successfully developed. By leveraging modern engineering strategies within the Design-Build-Test-Learn (DBTL) cycle framework, these advancements have revolutionized the biosynthesis of valuable compounds.

View Article and Find Full Text PDF

The biosynthesis of 5-hydroxyvaleric acid (5-HV) from glucose via the l-lysine degradation pathway cocurrently generates by-products, including l-lysine, 5-aminovaleric acid (5-AVA), and glutaric acid (GTA), which are closely interconnected with the 5-HV biosynthesis pathway. This study focuses on developing a highly selective 5-HV production system in Corynebacterium glutamicum. Initial strategies, such as using sorbitol as a co-substrate, deleting the endogenous GTA biosynthesis pathway, and incorporating a GTA recycling system, were insufficient to achieve selectivity.

View Article and Find Full Text PDF

The biobased production of chemicals is essential for advancing a sustainable chemical industry. 1,5-Pentanediol (1,5-PDO), a five-carbon diol with considerable industrial relevance, has shown limited microbial production efficiency until now. This study presents the development and optimization of a microbial system to produce 1,5-PDO from glucose in Corynebacterium glutamicum via the l-lysine-derived pathway.

View Article and Find Full Text PDF

Sugarcane industry is a major agricultural sector capable of producing sugars with byproducts including straw, bagasse, and molasses. Sugarcane byproducts are no longer wastes since they can be converted into carbon-rich resources for biorefinery if pretreatment of these is well established. Considerable efforts have been devoted to effective pretreatment techniques for each sugarcane byproduct to supply feedstocks in microbial fermentation to produce value-added fuels, chemicals, and polymers.

View Article and Find Full Text PDF
Article Synopsis
  • Bio-based manufacturing of platform chemicals and polymers is gaining traction in biorefineries, aimed at sustainable and carbon-neutral industries.
  • Key products like bio-based diamines, aminocarboxylic acids, and diacids serve as monomers for versatile polyamides and are also precursors for valuable chemicals.
  • Recent advancements in their production have been made through metabolic engineering of microbial consortia and optimizations in bioconversion processes, enhancing efficiency and sustainability.
View Article and Find Full Text PDF

γ-Aminobutyrate (GABA) is an important chemical by itself and can be further used for the production of monomer used for the synthesis of biodegradable polyamides. Until now, GABA production using harboring glutamate decarboxylases (GADs) has been limited due to the discrepancy between optimal pH for GAD activity (pH 4.0) and cell growth (pH 7.

View Article and Find Full Text PDF

With the increasing concerns regarding climate, energy, and plastic crises, bio-based production of biodegradable polymers has become a dire necessity. Significant progress has been made in biotechnology for the production of biodegradable polymers from renewable resources to achieve the goal of zero plastic waste and a net-zero carbon bioeconomy. In this review, an overview of polyhydroxyalkanoate (PHA) production from lignocellulosic biomass (LCB) was presented.

View Article and Find Full Text PDF

Since the 20th century, plastics that are widely being used in general life and industries are causing enormous plastic waste problems since improperly discarded plastics barely degrade and decompose. Thus, the demand for polyhydroxyalkanoates (PHAs), biodegradable polymers with material properties similar to conventional petroleum-based plastics, has been increased so far. The microbial production of PHAs is an environment-friendly solution for the current plastic crisis, however, the carbon sources for the microbial PHA production is a crucial factor to be considered in terms of carbon-neutrality.

View Article and Find Full Text PDF

Cupriavidus necator, a versatile microorganism found in both soil and water, can have both heterotrophic and lithoautotrophic metabolisms depending on environmental conditions. C. necator has been extensively examined for producing Polyhydroxyalkanoates (PHAs), the promising polyester alternatives to petroleum-based synthetic polymers because it has a superior ability for accumulating a considerable amount of PHAs from renewable resources.

View Article and Find Full Text PDF
Article Synopsis
  • The global reliance on petroleum has resulted in significant environmental issues like climate change, prompting a shift towards biorefineries that use microorganisms for sustainable production.
  • C4 alcohols, important chemicals for biofuels and other products, can be effectively produced through DCEO biotechnology and metabolic engineering techniques.
  • The review highlights production strategies, synthetic tools, and the development of microbial cell factories to optimize processes for cost-effective industrial production of C4 alcohols.
View Article and Find Full Text PDF

Here, we report an analysis method for determining PHA (polyhydroxyalkanoates) contents and their monomer composition in microbial cells based on pyrolysis gas chromatography combined with mass spectrometry (Py-GC/MS). Various kinds of microbial cells accumulating different PHA contents and monomer compositions were prepared through the cultivation of Ralstonia eutropha and recombinant Escherichia coli. Py-GC/MS could analyse these samples in a short time without complicated pretreatment steps.

View Article and Find Full Text PDF

Advances in scientific technology in the early twentieth century have facilitated the development of synthetic plastics that are lightweight, rigid, and can be easily molded into a desirable shape without changing their material properties. Thus, plastics become ubiquitous and indispensable materials that are used in various manufacturing sectors, including clothing, automotive, medical, and electronic industries. However, strong physical durability and chemical stability of synthetic plastics, most of which are produced from fossil fuels, hinder their complete degradation when they are improperly discarded after use.

View Article and Find Full Text PDF

Background: Gamma aminobutyric acid (GABA) is an important platform chemical, which has been used as a food additive and drug. Additionally, GABA is a precursor of 2-pyrrolidone, which is used in nylon synthesis. GABA is usually synthesized from glutamate in a reaction catalyzed by glutamate decarboxylase (GAD).

View Article and Find Full Text PDF

Sucrose utilization has been established in Escherichia coli strains by expression of Mannheimia succiniciproducens β-fructofuranosidase (SacC), which hydrolyzes sucrose into glucose and fructose. Recombinant E. coli strains that can utilize sucrose were examined for their abilities to produce poly(3-hydroxybutyrate) [P(3HB)] and poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)] from sucrose.

View Article and Find Full Text PDF
Article Synopsis
  • Concerns about pollution from non-degradable plastics have led to increased interest in biodegradable plastics, particularly polyhydroxyalkanoates (PHAs), which are produced by microorganisms and possess similar properties to conventional plastics.
  • * Research efforts are focused on understanding how PHAs are synthesized and improving microbial strains to produce them efficiently for industrial use, leveraging advancements in biotechnology.
  • * This review highlights recent developments in microbial production of PHAs and other non-natural polyesters, aiming to pave the way for engineering microorganisms as sustainable alternatives in plastic manufacturing.
View Article and Find Full Text PDF