98%
921
2 minutes
20
Levels of tissue oxygenation and collagen regeneration are critical indicators in the early evaluation of wound healing. Traditionally, these factors have been assessed using separate instruments and different methodologies. Here, we adopt the spatially averaged phosphorescence lifetime approach using Re-diimine complexes (Re-probe) to enable simultaneous quantification of these two critical factors in healing wounds. The topically applied, biocompatible Re-probe penetrates wound tissue effectively and selectively binds to collagen fibers. During collagen regeneration, the phosphorescence lifetimes of the collagen-bound probe significantly extend from an initial range of 4.5-6.5 μs on day 0 to 5.5-8.5 μs by day 7. Concurrently, unbound probes in the tissue interstitial spaces exhibit a phosphorescence lifetime of 4.5-5.2 μs, revealing the oxygenation states. Using phosphorescence lifetime imaging microscopy (PLIM) and a frequency domain phosphorescence lifetime measurement (FD-PLM) system, we validated the dual-functionality of this Re-probe in differentiating healing stages in chronic wounds. With its noninvasive, quantitative measurement capabilities for cutaneous wounds, this Re-probe-based approach offers promising potential for early wound healing diagnosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783361 | PMC |
http://dx.doi.org/10.1021/acsami.4c15069 | DOI Listing |
Org Lett
September 2025
Guangdong Basic Research Center of Excellence for Aggregate Science, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
The polymerization mechanism and the identification of key oligomer intermediates during the thermal condensation of benzoguanamine (BG) remain unclear. Herein, we report a novel mixed thermal condensation strategy using BG and a pre-synthesized dimer to selectively synthesize the trimer (BG) with a significantly enhanced yield. Comprehensive characterization techniques confirm the formation of a linear molecular structure for (BG).
View Article and Find Full Text PDFChem Sci
August 2025
State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 China +86
The construction of polymer-based photoactivated room-temperature phosphorescence systems remains a prominent research focus, yet the development of ultrafast activated systems under ambient conditions continues to pose a challenge. In this study, cyclized phenothiazine derivatives bearing diverse substituents are synthesized and incorporated into an amorphous polyvinyl alcohol (PVA) matrix, resulting in significantly enhanced dynamic photoactivation characteristics compared with those of their pristine monomeric counterparts. Under ambient conditions and 2 s irradiation, the lifetime and quantum yield of C[4]PTZ-OH@PVA increase by factors of 1.
View Article and Find Full Text PDFChem Sci
August 2025
College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University Jiujiang 332005 China
BN-fused aromatic compounds have garnered significant attention due to their unique electronic structures and exceptional photophysical properties, positioning them as highly promising candidates for applications in organic optoelectronics. However, the regioselective synthesis of BN isomers remains a formidable challenge, primarily stemming from the difficulty in precisely controlling reaction sites, limiting structural diversity and property tunability. Herein, we propose a regioselective synthetic strategy that employs 2,1-BN-naphthalene derivatives, wherein selective activation of N-H and C-H bonds is achieved in conjunction with -halogenated phenylboronic acids.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
State Key Laboratory of Analytical Chemistry for Life Sciences, Engineering Research Center of Photoresist Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
Circularly polarized room-temperature phosphorescent (CP-RTP) materials have been attracting great attention due to their potential applications in anticounterfeiting. In this study, we designed and synthesized a host-guest copolymer () with strong phosphorescence emission and a long emission lifetime using a self-doping strategy. The co-assembled liquid crystal polymer networks / doped with demonstrated a stronger RTP emission and longer lifetime (τ = 148 ms).
View Article and Find Full Text PDFSmall
September 2025
Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China.
The precise modulation of the lifetime and the responsive properties of room-temperature phosphorescence (RTP) is essential for realizing its multifunctional applications. Herein, a facile strategy is presented to achieve a series of cellulose benzoate esters (CBE-X, X = H/CH/OH/NH) with lifetime-tunable RTP through substituent engineering. Enhancing the electron-donating ability of CBE-X effectively modulates the HOMO-LUMO gap, exciton energy, spin-orbit coupling, and interaction between cellulose chains, thereby enabling control over the RTP lifetime.
View Article and Find Full Text PDF