Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
is an important medicinal plant, rich in flavonoid, with various pharmacological activities such as stomachic and antioxidant properties. In this study, we integrated metabolome and transcriptome analyses to reveal metabolite and gene expression profiles of both green (GDd) and purple-red (RDd) of semi-annual and annual stems. A total of 244 flavonoid metabolites, mainly flavones and flavonols, were identified and annotated. Cyanidin and delphinidin were the major anthocyanidins, with cyanidin-3-O-(6″-O-p-Coumaroyl) glucoside and delphinidin-3-O-(6″-O-p-coumaroyl) glucoside being the highest relative content in the RDd. Differential metabolites were significantly enriched, mainly in flavonoid biosynthesis, anthocyanin biosynthesis, and flavone and flavonol biosynthesis pathways. Transcriptomic analysis revealed that high expression levels of structural genes for flavonoid and anthocyanin biosynthesis were the main reasons for color changes in stems. Based on correlation analysis and weighted gene co-expression network analysis (WGCNA) analysis, (chalcone synthase) and (anthocyanidin 3-O-glucosyltransferase) were identified as important candidate genes involved in stem pigmentation. In addition, key transcription factors (TFs), including three bHLH (bHLH3, bHLH4, bHLH5) and two MYB (MYB1, MYB2), which may be involved in the regulation of flavonoid biosynthesis, were identified. This study provides new perspectives on efficacy components and the flavonoids and stem color regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11674678 | PMC |
http://dx.doi.org/10.3390/cimb46120855 | DOI Listing |