A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Caterpillar-Inspired Multi-Gait Generation Method for Series-Parallel Hybrid Segmented Robot. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The body structures and motion stability of worm-like and snake-like robots have garnered significant research interest. Recently, innovative serial-parallel hybrid segmented robots have emerged as a fundamental platform for a wide range of motion modes. To address the hyper-redundancy characteristics of these hybrid structures, we propose a novel caterpillar-inspired Stable Segment Update (SSU) gait generation approach, establishing a unified framework for multi-segment robot gait generation. Drawing inspiration from the locomotion of natural caterpillars, the segments are modeled as rigid bodies with six degrees of freedom (DOF). The SSU gait generation method is specifically designed to parameterize caterpillar-like gaits. An inverse kinematics solution is derived by analyzing the forward kinematics and identifying the minimum lifting segment, framing the problem as a single-segment end-effector tracking task. Three distinct parameter sets are introduced within the SSU method to account for the stability of robot motion. These parameters, represented as discrete hump waves, are intended to improve motion efficiency during locomotion. Furthermore, the trajectories for each swinging segment are determined through kinematic analysis. Experimental results validate the effectiveness of the proposed SSU multi-gait generation method, demonstrating the successful traversal of gaps and rough terrain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673175PMC
http://dx.doi.org/10.3390/biomimetics9120754DOI Listing

Publication Analysis

Top Keywords

generation method
12
gait generation
12
multi-gait generation
8
hybrid segmented
8
ssu gait
8
generation
5
caterpillar-inspired multi-gait
4
method
4
method series-parallel
4
series-parallel hybrid
4

Similar Publications