98%
921
2 minutes
20
Background: The deep inferior epigastric perforator (DIEP) flap provides an effective and popular means for autologous breast reconstruction. However, with the complexity of the pathway, the environmental impact of the pathway has yet to be evaluated.
Methods: A retrospective analysis of 42 unilateral DIEPs at a single reconstructive center was performed. Process mapping and life-cycle analyses were performed for equipment, staff, patients, and land. A bottom-up approach was adopted to calculate carbon dioxide equivalent estimates for the initial consultation, preoperative, intraoperative, and immediate postoperative periods.
Results: This study estimated the carbon footprint of a patient undergoing DIEP flap surgery to be approximately 233.96 kg COeq. Induction, maintenance, and running of anesthesia had the highest overall contribution to the carbon footprint (158.17 kg COeq, 67.60% overall). Patient and staff travel contributed more than 15% overall carbon emissions in this study. The impact of sterilization was less than half of that from waste management (0.81 versus 1.81 kg COeq, respectively). Waste management alone contributed 4.21 kg COeq of the overall carbon emissions, the majority of which was accountable to the incineration of 14.75 kg of noninfectious offensive waste.
Conclusions: This study estimates the carbon footprint of the DIEP pathway. Strategies to mitigate the impact of carbon emissions including usage of reusable vs single-use equipment, virtual consultations, standardization of equipment packs, and optimizing waste disposal were suggested areas for improvement. Data from manufacturers on life-cycle assessments were limited, and further work is needed to fully understand and optimize the impact of DIEP surgery on the environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671060 | PMC |
http://dx.doi.org/10.1097/GOX.0000000000006374 | DOI Listing |
Clin Teach
October 2025
Medical Education, South Warwickshire University NHS Foundation Trust, Warwick, England, UK.
Introduction: Climate health is gaining prominence in medical curricula worldwide, with academic and healthcare institutions setting targets to reach carbon net zero. However, the integration of evidence-based strategies to reduce carbon footprint in medical education is constrained by a scarcity of research. This research study uses a novel approach to quantifying the carbon footprint of three teaching modalities within an undergraduate medical curriculum.
View Article and Find Full Text PDFAsia Pac J Ophthalmol (Phila)
September 2025
Department of ophthalmology, Sarawak General Hospital, Kuching, Malaysia.
Purpose: To determine Asia Pacific cataract surgeons' attitudes toward surgical waste and toward reusing supplies and pharmaceuticals.
Design: Multinational survey of APAO members METHODS: An online survey link was distributed to APAO members through their national ophthalmology societies. Responses were deidentified and compared with those from identical survey questionnaires previously distributed to North American and European cataract surgeons.
Environ Sci Pollut Res Int
September 2025
Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia.
Concrete production significantly contributes to CO emissions and depletion of natural resources, leading to substantial environmental concerns. The integration of polymers into concrete has emerged as a promising innovative solution aimed at overcoming inherent limitations of traditional concrete, including brittleness, susceptibility to tracking, environmental degradation, and substantial ecological impacts. This systematic review thoroughly investigates the properties, sustainability implications, and practical challenges associated with polymer-based concrete (PBC), particularly focusing on polymer concrete composites (PCC) and polymer-modified concrete (PMC) detailing their composition, mechanical behavior, and durability.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China. Electronic address:
Anaerobic self-forming dynamic membrane (AnSFDM) bioreactors have attracted increasing attention owing to their cost-effectiveness and lower carbon footprint. AnSFDM formation is the initial process of their operation and of pivotal importance for determining the basic characteristics of AnSFDMs. Nevertheless, the effect of operational parameters on the AnSFDM formation process has not been studied in a systematical and quantitative manner.
View Article and Find Full Text PDFChemistry
September 2025
State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China.
This study introduces the HydroTherm-Flow Smart Window (HTF Window), the first groundbreaking integration of thermochromic windows and Fe-Cr redox flow batteries (Fe-Cr RFBs), achieving dual functionalities of dynamic solar modulation-via dual-band (visible + near-infrared, NIR) modulation-and high-efficiency energy storage in a single component. Leveraging tunable hydroxypropyl cellulose (HPC) hydrogels, it enables ultrafast optical switching and autonomous nighttime opacity, overcoming the slow response and privacy limitations of conventional thermochromic systems. By repurposing the window as a compact electrolyte reservoir, it reduces the RFB spatial footprint while enhancing ionic conductivity by 30% via hydrogel "ion highways," achieving 77% energy efficiency with a 40% reduction in the solar heat gain coefficient.
View Article and Find Full Text PDF