A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Unraveling the C-C Coupling Mechanism on Dual-Atom Catalysts for CO/CO Reduction Reaction: The Critical Role of CO Hydrogenation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The electrochemical reduction reaction (RR) of CO to high value multicarbon products is highly desirable for carbon utilization. Dual transition metal atoms dispersed by N-doped graphene are able to be highly efficient catalysts for this process due to the synergy of the bimetallic sites for C-C coupling. In this work, we screened homonuclear dual-atom catalysts dispersed by N-doped graphene to investigate the potential in CO reduction to C products by employing density functional theory calculations. We have demonstrated that the two adsorbed CO species on bimetallic sites cannot directly couple unless one of the CO molecules is hydrogenated. All the dual metal atom catalysts prefer a similar coupling mechanism, i.e., the asymmetric coupling of *CO on the bridged site and *CHO on the top site, while the Ni and Cu catalysts exhibit much better performance with moderate adsorption energies and low energy barriers. The enhanced activities are attributed to the decrease of the energy levels of *CO 2p states that weakens the metal-C bonding and thus facilitates the feasible C-C coupling with both low reaction energies and low barriers. These insights have revealed the significant role of the hydrogenation of CO species prior to the coupling step and may provide a theoretical perspective to understand the generation of C products in the CO/CORR.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c03123DOI Listing

Publication Analysis

Top Keywords

c-c coupling
12
coupling mechanism
8
dual-atom catalysts
8
reduction reaction
8
role hydrogenation
8
dispersed n-doped
8
n-doped graphene
8
bimetallic sites
8
energies low
8
coupling
6

Similar Publications