A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

ArHDZ19 contributes to drought tolerance by advancing flowering time in Anoectochilus roxburghii. | LitMetric

ArHDZ19 contributes to drought tolerance by advancing flowering time in Anoectochilus roxburghii.

Plant Sci

State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China. Electronic address:

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The homeodomain-leucine zippper gene family encodes plant-specific transcription factors that not only affect growth and development, but also play important roles in the drought response. ArHDZ19, from Anoectochilus roxburghii, encodes a homeodomain-leucine zipper III subfamily protein whose function and molecule ar mechanism remains unclear. Here, we explored the function of ArHDZ19 in regulating growth and the drought response. ArHDZ19 localized in the nucleus and its expression was strongly induced under drought stress. Overexpression of ArHDZ19 in Arabidopsis thaliana (OE-ArHDZ19) not only increased plant height and the length of stamens and pistils, but also resulted in an earlier flowering phenotype. The flowering-related genes FLOWERING LOCUS T (FT), SUPPRESSOR OF CONSTANS OVEREXPRESSION 1 (SOC1), CONSTANS (CO), FLOWERING LOCUS C (FLC), and GIGANTEA (GI) were up-regulated in the OE-ArHDZ19 lines. Moreover, under drought conditions, overexpression of ArHDZ19 improved the plant survival rate and advanced the flowering time. Stress-responsive genes such as COLD-REGULATED 47 (COR47), KINESIN 1 (KIN1), and RESPONSE TO DESICCATION (RD29A) were up-regulated by drought treatment; however, their transcript levels were lower in OE-ArHDZ19 plants than in wild-type plants. These results indicate that ArHDZ19 can improve the drought resistance of plants by advancing the flowering time, which may be a drought-avoidance mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2024.112369DOI Listing

Publication Analysis

Top Keywords

flowering time
12
advancing flowering
8
anoectochilus roxburghii
8
drought response
8
response arhdz19
8
overexpression arhdz19
8
flowering locus
8
arhdz19
7
drought
7
flowering
6

Similar Publications